6£®ÔÚÆ½ÃæÖ±½Ç×ø±êxOyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=4+\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²OµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=4cos¦È\\ y=4sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlÓëÔ²OÏཻÓÚA£¬BÁ½µã£¬Çó|AB|£®

·ÖÎö °ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²OµÄÆÕͨ·½³Ì£¬¿ÉµÃ${t^2}+4\sqrt{3}t=0$£¬ÀûÓÃÏÒ³¤|AB|=|t1-t2|¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÔ²OµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=4cos¦È\\ y=4sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£ºx2+y2=16£®
°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²OµÄÆÕͨ·½³Ì£¬¿ÉµÃ${t^2}+4\sqrt{3}t=0$£¬
½âµÃt1=0£¬${t_2}=-4\sqrt{3}$£¬
¡àÏÒ³¤$|{AB}|=|{{t_1}-{t_2}}|=4\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÍAD£¬AD¡ÎBC£¬²àÀâPA¡ÍABCD£¬ÇÒPA=AB=BC=2£¬AD=1
£¨1£©ÊÔ×ö³öÆ½ÃæPABÓëÆ½ÃæPCDµÄ½»ÏßEP
£¨2£©ÇóÖ¤£ºÖ±ÏßEP¡ÍÆ½ÃæPBC
£¨3£©Çó¶þÃæ½ÇC-PB-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Å×ÎïÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=2cos¦È£®
£¨1£©Çó³öÖ±ÏßlµÄÆÕͨ·½³Ì¼°Å×ÎïÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèµãP£¨2£¬0£©£¬Ö±ÏßlÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£¬Çó|PA|•|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}$£¨tΪ²ÎÊý£©£¬µãPÊÇÇúÏß$\left\{{\begin{array}{l}{x=1+2cos¦Á}\\{y=2+2sin¦Á}\end{array}}$£¨¦ÁΪ²ÎÊý£©ÉϵÄÈÎÒ»µã£¬ÔòµãPµ½Ö±Ïßl¾àÀëµÄ×îСֵΪ$2\sqrt{2}$-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=xlnx
£¨¢ñ£©Çóf£¨x£©µÄ×îСֵ£»
£¨¢ò£©ÇóÖ¤£ºlnx£¾$\frac{1}{e^x}-\frac{2}{ex}$£¬x¡Ê£¨0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬¡÷PABºÍ¡÷CAB¶¼ÊÇÒÔABΪб±ßµÄµÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨1£©Ö¤Ã÷£ºAB¡ÍPC£»
£¨2£©ÈôAB=2PC=$\sqrt{2}$£¬ÇóÈýÀâ×¶P-ABCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬A1A=AB£¬CB¡ÍA1ABB1£®
£¨1£©ÇóÖ¤£ºAB1¡ÍÆ½ÃæA1BC£»
£¨2£©ÈôAC=5£¬BC=3£¬¡ÏA1AB=60¡ã£¬ÇóÈýÀâ×¶C-AA1BµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¼¯ºÏA={x||x-a|£¼4}£¬B={x|x2-4x-5£¾0}
£¨1£©ÈôA¡ÈB=R£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
£¨2£©ÏØ·ñ´æÔÚʵÊýa£¬Ê¹µÃA¡ÉB=∅£¿Èô´æÔÚ£¬ÔòÇóaµÄȡֵ·¶Î§£¬·ñÔò£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=|x-2|-|x+1|£®
£¨1£©½â²»µÈʽf£¨x£©£¾1£»
£¨2£©µ±x£¾0ʱ£¬º¯Êýg£¨x£©=$\frac{a{x}^{2}-x+1}{x}$£¨a£¾0£©µÄ×îСֵ×Ü´óÓÚº¯Êýf£¨x£©£¬ÊÔÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸