精英家教网 > 高中数学 > 题目详情
14.已知直线y=1-x与椭圆ax2+by2=1(a>0,b>0)交于A,B两点,且过原点和线段AB中点的直线的斜率为$\frac{{\sqrt{3}}}{2}$,则$\frac{a}{b}$的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{2\sqrt{3}}}{27}$

分析 把y=1-x代入椭圆ax2+by2=1,得(a+b)x2-2bx+b-1=0,由此利用韦达定理、中点坐标公式能求出结果.

解答 解:把y=1-x代入椭圆ax2+by2=1,得ax2+b(1-x)2=1,
整理得(a+b)x2-2bx+b-1=0,
设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{2b}{a+b}$,y1+y2=2-$\frac{2b}{a+b}$,
∴线段AB的中点坐标为($\frac{b}{a+b}$,$\frac{a}{a+b}$),
∴过原点与线段AB中点的直线的斜率k=$\frac{\frac{a}{a+b}}{\frac{b}{a+b}}$=$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题考查两数比值的求法,是中档题,解题时要认真审题,注意韦达定理、中点坐标公式、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.两个袋子中分别装有3个红色球和3个白色球.从中取出一个红色球和一个白色球,共有多少种方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的导数.
(1)f(x)=(x3+1)(2x2+8x-5);
(2)f(x)=xtanx-$\frac{2}{cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是R上的一个偶函数,g(x)是R上的一个奇函数,且满足f(x)=g(x)+3x
(1)求函数f(x)的解析式;
(2)证明:函数f(x)在区间(0,+∞)上是增函数;
(3)设h(x)=$\sqrt{f(x)-a}$,若函数h(x)在x∈[1,+∞)时都有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)<x,则不等式(x+1)2f(x+1)-4f(-2)>0的解集为(  )
A.(-∞,-2)B.(-2,-1)C.(-∞,-3)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{3}}}{2}$,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为$\frac{2\sqrt{5}}{5}$.
(1)求椭圆C的方程;
(2)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交x轴于点N,M,若直线OT与以MN为直径的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.
(Ⅰ)图中格点四边形DEFG对应的S,N,L分别是   ;
(Ⅱ)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=51,L=20,则S=   (用数值作答).(  )
A.3,1,6;60B.3,1,6;70C.3,2,5;60D.3,2,5;70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题P:函数y=loga(1+2x)在定义域上单调递减;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.
(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(ii)若这8位同学的数学、物理分数事实上对应如下表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数r=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}}$;回归直线的方程是:$\widehaty=bx+a$,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline y-b\overline x$,$\widehat{y_i}$是与xi对应的回归估计值.
参考数据:$\overline x=77.5,\overline y=84.875,{\sum_{i=1}^8{({x_i}-\overline x)}^2}≈1050,{\sum_{i=1}^8{({y_i}-\overline y)}^2}$≈457,$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)≈688,\sqrt{1050}≈32.4,\sqrt{457}≈21.4,\sqrt{550}$≈23.5.

查看答案和解析>>

同步练习册答案