精英家教网 > 高中数学 > 题目详情
已知函数f(2x+3)的定义域为(2,4),求f(3x+1)的定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:由函数f(2x+3)的定义域,即是x的取值范围,求出f(t)的定义域,由此求出函数f(3x+1)的定义域.
解答: 解:∵函数f(2x+3)的定义域为(2,4),
即2<x<4,
∴7<2x+3<11;
即7<3x+1<11,
∴2<x<
10
3

∴函数f(3x+1)的定义域为(2,
10
3
).
点评:本题考查了求函数的定义域的问题,解题时应明确函数定义域的含义是什么,从而得出正确的答案来,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
6
-α)=
1
2
,那么cos(
3
-α)=(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:-
π
2
<x<0,sinx+cosx=
1
5

(Ⅰ)求sinx-cosx的值;
(Ⅱ)求
cos(π-x)cos(
π
2
-x)tan(-π+x)
sin2(
π
2
+x)-sin2(π+x)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以X(单位:盒,100≤X≤200)表示这个丌学季内的市场需求量,Y(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)将Y表示为X的函数;
(Ⅱ)根据直方图估计利润Y不少于4800元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区的频率作为需求量取该区间中点值的概率(例如:若需求量X[100,120),则取X=110,且X=110的概率等于需求量落入[100,120)的频率),求Y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2a2+4a-3=0,3b2-4b-2=0,求
1
a
+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD,若E,F分别为PC,BD的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求三棱锥F-DEC的体积;
(Ⅲ)在线段AB上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(Ⅰ)求证:b2=ac
(Ⅱ)若a=1,c=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于某设备的使用年限x和所支出的维修费用y(单位:万元),有如下统计资料,由资料可知y与x有线性相关关系,试求:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
(1)该线性回归方程;  
(2)估计使用年限为10年时,维修费用是多少万元?
参考数据:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3
参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为[0,1],求函数y=f(x+a)+f(x-a)的定义域.

查看答案和解析>>

同步练习册答案