精英家教网 > 高中数学 > 题目详情
18.设a,b,c∈R+,且a+b+c=1,则$\frac{1}{{a}^{2}}$$+\frac{1}{{b}^{2}}$$+\frac{1}{{c}^{2}}$的最小值是27.

分析 运用三元均值不等式1≥3$\root{3}{abc}$,$\frac{1}{{a}^{2}}$$+\frac{1}{{b}^{2}}$$+\frac{1}{{c}^{2}}$≥3$\root{3}{\frac{1}{{a}^{2}{b}^{2}{c}^{2}}}$,即可得到最小值.

解答 解:∵a+b+c=1,a,b,c>0,
∴1≥3$\root{3}{abc}$,
∴$\frac{1}{abc}$≥27,
∴$\frac{1}{{a}^{2}}$$+\frac{1}{{b}^{2}}$$+\frac{1}{{c}^{2}}$≥3$\root{3}{\frac{1}{{a}^{2}{b}^{2}{c}^{2}}}$≥27(当且仅当a=b=c时取等号),
故答案为:27.

点评 本题考查三元均值不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右顶点A(2,0)和上顶点B,直线AB被圆T:x2+y2-10x+16=0所截得的弦长为$\frac{{12\sqrt{7}}}{7}$.
(1)求椭圆E的方程;
(2)过椭圆E的右焦点作不过原点的直线l与椭圆E交于M,N两点,直线MA,NA与直线x=3分别交于C,D两点,记△ACD的面积为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,则当△AEF的面积最大时,BC=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{(2x-1{)e}^{-x},x≥0}\\{f(x+1),x<0}\end{array}\right.$在区间[-10,10]上零点个数为(  )
A.11个B.10个C.22个D.20个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知四棱锥P-ABCD的外接球的表面积为12π,ABCD是边长为2的正方形,PA=PB,平面PAB⊥平面ABCD,则△PCD的面积为(  )
A.$\sqrt{7+2\sqrt{2}}$B.$\sqrt{14}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过抛物线L:x2=2py(p>0)的焦点F且斜率为$\frac{3}{4}$的直线与抛物线L在第一象限的交点为P,且|PF|=5
(1)求抛物线L的方程;
(2)设直线l:y=kx+m与抛物线L交于A(x1,y1),B(x2,y2)两点.
(ⅰ)若k=2,线段AB的垂直平分线分别交y轴和抛物线L于M,N两点,(M,N位于直线l两侧),当四边形AMBN为菱形时,求直线l的方程;
(ⅱ)若直线l过点,且交x轴于点C,且$\overrightarrow{CA}$=a$\overrightarrow{AF}$,$\overrightarrow{CB}$=b$\overrightarrow{BF}$,对任意的直线l,a+b是否为定值?若是,求出a+b的值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设O为锐角△ABC的外心,cos∠BAC=$\frac{1}{3}$,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y的最大值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合S中的元素是正整数,且满足命题“如果x∈S,则(10-x)∈S”,回答下列问题:
(1)试写出只有一个元素的S.
(2)试写出元素个数为2的全部S.
(3)满足上述命题的集合S共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-$\frac{a}{x}$(a>0).
(1)判断f(x)的奇偶性;
(2)证明f(x)在(0,+∞)上是增函数.

查看答案和解析>>

同步练习册答案