精英家教网 > 高中数学 > 题目详情

【题目】为了了解甲、乙两名同学的数学学习情况,对他们的次数学测试成绩(满分分)进行统计,作出如下的茎叶图,其中处的数字模糊不清,已知甲同学成绩的中位数是,乙同学成绩的平均分是.

(1)求的值;

(2)现从成绩在之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.

【答案】(1) (2)

【解析】

试题分析:(1)根据中位数定义可得,根据平均数定义可得;(2)成绩在之间的试卷共5份,利用枚举法可得随机抽取两份共有10种不同取法,而其中恰抽到一份甲同学试卷的基本事件数为6,因此所求主概率可得.

试题解析:(1)∵甲同学成绩的中位数是83,∴

∵乙同学的平均分为86,

,∴

(2)甲同学成绩在上的试卷有二份,记为,乙同学成绩在上的试卷有三份,记为,“从5份试卷中任取2份试卷”的所有可能结果为:

,共有10种情况,

记“从成绩中的试卷中任取2份,恰抽到甲同学一份试卷”为事件,事件含有的基本事件有,共6种,∴.故从成绩在之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 . (I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,的中点.

求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.
(Ⅰ)求证:△PAB为直角三角形;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是平行四边形,已知,平面平面.

(1)证明:

(2)若,求平面与平面所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若对一切,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面ABCD是平行四边形,△PAB与△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2 ,AC⊥BA,点E是线段AB上靠近点B的一个三等分点,点F、G分别在线段PD,PC上.
(Ⅰ)证明:CD⊥AG;
(Ⅱ)若三棱锥E﹣BCF的体积为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数yf(x)的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f(x)>f(-x)+x的解集为(  )

A. (0,1]

B. [-1,0)

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

查看答案和解析>>

同步练习册答案