精英家教网 > 高中数学 > 题目详情
已知a为常数,a∈R,函数f(x)=x2+ax-lnx,g(x)=ex(其中e是自然对数的底数).
(1)过坐标原点O作曲线y=f(x)的切线,设切点为P(x0,y0),求x0的值;
(2)令F(x)=
f(x)
g(x)
,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)斜率k等于函数在切点的导数,x0是方程的解,且y=x2+lnx-1在(0,+∞)上是增函数,可证求;
(2)F(x)=
f(x)
g(x)
=
x2+ax-lnx
ex
,F′(x)=
-x2+(2-a)x+a-
1
x
+lnx
ex
,设h(x)=-x2+(2-a)x+a-
1
x
+lnx 由h'(x)在(0,1]上是减函数,可得h'(x)≥h'(1)=2-a,通过研究2-a的正负可判断h(x)的单调性,进而可得函数F(x)的单调性,可求参数的取值范围.
解答: 解:(1)f′(x)=2x+a-
1
x
(x>0)所以切线的斜率k=2x0+a-
1
x0
=
x02+ax0-lnx0
 x0

整理得x02+lnx0-1=0 显然x0=1是这个方程的解,
又∵为y=x2+lnx-1在(0.+∞)上是增函数,
∴方程x2+lnx-1=0有唯一实数解,故x0=1,
(2)F(x)=
f(x)
g(x)
=
x2+ax-lnx
ex
,F′(x)=
-x2+(2-a)x+a-
1
x
+lnx
ex

设h(x)=-x2+(2-a)x+a-
1
x
+lnx 则h′(x)=-2x+
1
x2
+
1
x
+2-a易知h′(x)在(0,+∞)上是减函数,从而h′(x)≥h′(1)=2-a,
(1)当2-a≥0时,即a≤2时,h′(x)≥0,h(x)在(0.1)上是增函数
∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F′(x)≤0区间(0,1]上是单调递减函数,所以a≤2满足题意,
(2)当2-a<0时,即a>2时,设函数h′(x)的唯一零点为x0,则h(x)在(0,x0)上单调递增,在(x0,1)单调递减,
又∵h(1)=0,∴h(x0)>0,又∵h(e-a)<0,
∴h(x)在(0,1)内有唯一一个零点m,
当x∈(0,m)时,h(x)<0,当x∈(m,1)时,h(x)>0,从而F(x)在(0,m)上单调递减,在(m,1)上单调递增,与在区间(0,1]上是单调函数矛盾,
∴a>2不合题意,综合(1)(2)得a≤2.
点评:考查学生利用导数研究函数的单调能力,函数单调性的判定,以及导数的运算,试题具有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=
3
2
,an+1=
3an
2an+3

(Ⅰ)求通项an
(Ⅱ)若数列{bn}满足bn•an=3(1-
1
2n
),求数列{bn}的前n和.

查看答案和解析>>

科目:高中数学 来源: 题型:

深圳科学高中致力于培养以科学、技术、工程和数学见长的创新型高中学生,“工程技术”专用教室是学校师生共建的创造者的平台,该教室内某设备D价值24万元,D的价值在使用过程中逐年减少,从第2年到第5年,每年初D的价值比上年初减少2万元;从第6年开始,每年初D的价值为上年初的25%,
(1)求第5年初D的价值a5
(2)求第n年初D的价值an的表达式;
(3)若设备D的价值an大于2万元,则D可继续使用,否则须在第n年初对D更新,问:须在哪一年初对D更新?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是抛物线y=1-x2上在y轴两侧的点,求过点A、B的切线与x轴围成面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A、C的对边,m=(b,2a-c),n=(cosB,cosC)且m∥n.
(Ⅰ)求角B的大小;
(Ⅱ)设f(x)=cosωx+sin(ωx+
B
2
)(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知 A>B,且tanA、tanB是方程6x2-5x+1=0的两个根.
(1)求tanA、tanB、tan(A+B)的值;
(2)若AB=
5
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|-3≤x≤4},B={x|2m-1≤x≤2m+1},A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf′(x)<f(-x)成立(其中f′(x)是f(x)的导函数).若a=
3
f(
3
),b=f(1),c=(log2
1
4
)f(log2
1
4
),则a、b、c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x+1)7的展开式中含x3项的系数值为
 

查看答案和解析>>

同步练习册答案