精英家教网 > 高中数学 > 题目详情
14.若x,y满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-y≥0\\ x+2y≥0\end{array}\right.$,则目标函数z=2x+y的最大值为6.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-y≥0\\ x+2y≥0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x+y-2=0}\\{x+2y=0}\end{array}\right.$,解得A(4,-2),
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A(4,-2)时,直线在y轴上的截距最大,z有最大值为2×4-2=6.
故答案为:6.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且经过点(1,$\frac{\sqrt{2}}{2}$),
(1)求椭圆C的标准方程;
(2)设Q(2,0),过点(-1,0)的直线l交C于M,N两点,△QMN的面积记为S,若对满足条件的任意直线l,不等式S≤λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图中,正(主)视图和  侧(左)视图如图所示,则俯视图不可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解关于x的不等式:x2+ax+4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若存在直线l与曲线C1和曲线C2都相切,则称曲线C1和曲线C2为“相关曲线”,有下列三个命题:①有且只有两条直线l使得曲线C1:x2+y2=4和曲线C2:x2+y2-4x+2y+4=0为“相关曲线”;②曲线C1:4y2-x2=1和曲线C2:x2-4y2=1是“相关曲线”;③曲线C1:y=lnx和曲线C2:y=x2-x为“相关曲线”.其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直三棱柱ABC-A1B1C1中,AB=AC,BB1=BC,点P,Q,R分别是棱BC,CC1,B1C1的中点.
(1)求证:A1R∥平面APQ;
(2)求证:平面APQ⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)为R上的奇函数,当x>0时,f(x)=$\frac{1}{2}$(|x+cosa|+|x+2cosa|+3cosa),若对任意实数x,都有f(x-3)≤f(x)恒成立,则a的取值范围是[-$\frac{2π}{3}$+2kπ,2kπ+$\frac{2π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{m}$=(2cosωx,-1),$\overrightarrow{n}$=(sinωx-cosωx,2)(ω>0),函数f(x)=$\overrightarrow m•\overrightarrow n+3$,若函数f(x)的图象的两个相邻对称中心的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)将函数f(x)的图象先向左平移$\frac{π}{4}$个单位,然后纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,得到函数g(x)的图象,当$x∈[\frac{π}{6},\frac{π}{2}]$时,求函数g(x)的值域.

查看答案和解析>>

同步练习册答案