精英家教网 > 高中数学 > 题目详情
7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)与$\overrightarrow{b}$夹角余弦为(  )
A.$\frac{5}{7}$B.$\frac{11}{14}$C.-$\frac{5}{7}$D.-$\frac{11}{14}$

分析 先求出($\overrightarrow{a}$+2$\overrightarrow{b}$)的模,再根据向量的夹角的余弦公式求出即可.

解答 解:|$\overrightarrow{a}$+2$\overrightarrow{b}$|2=$\overrightarrow{a}$•$\overrightarrow{a}$+4$\overrightarrow{a}$•$\overrightarrow{b}$+4$\overrightarrow{b}$•$\overrightarrow{b}$=25+4×5×4cos120°+4×4×4=49,
故|$\overrightarrow{a}$+2$\overrightarrow{b}$|=7,
∴cos<$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{b}$>=$\frac{(\overrightarrow{a}+2\overrightarrow{b})•\overrightarrow{b}}{|\overrightarrow{a}+2\overrightarrow{b}|•|\overrightarrow{b}|}$=$\frac{\overrightarrow{a}•\overrightarrow{b}+2\overrightarrow{b}•\overrightarrow{b}}{|\overrightarrow{a}+2\overrightarrow{b}|•|\overrightarrow{b}|}$=$\frac{5×4×cos120°+2×16}{7×4}$=$\frac{11}{14}$,
故选:B.

点评 本题考查了平面向量数量积的运算,考查向量的夹角的余弦公式,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an},其前n项和为${S_n}={n^2}+n$
(Ⅰ)求a1,a2,a3
(Ⅱ)求{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.令g1(x)=g(x),${g_{n+1}}=g({g_n}(x)),n∈{N^+}$,请猜想出gn(x)的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于n∈N*,将n表示为n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,ai为0或1.记I(n)为上述表示中ai为0的个数(例如5=1×22+0×21+1×20,故I(5)=1),则I(65)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$α∈(0,\frac{π}{4})$,β∈(0,π)且tan(α-β)=$\frac{1}{2}$,tan$β=-\frac{1}{7}$,求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}满足a1=2,an=4an-1+2n,n∈N*,且n≥2.
(1)求证:数列{an+2n}为等比数列;
(2)若Sn为数列{an}的前n项和,设bn=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,证明:b1+b2+…+bn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知四棱锥 V-ABCD的底面是边长为2正方形,侧面都是侧棱长为$\sqrt{5}$的等腰三角形,则二面角V-AB-C的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C对应边分别为a,b,c,若$\sqrt{3}$asinC+acosC=c+b.
(1)求角A;
(2)若a=$\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数,这四种变量中服从超几何分布的是(  )
A.①②B.③④C.①②④D.①②③④

查看答案和解析>>

同步练习册答案