精英家教网 > 高中数学 > 题目详情
15.对于n∈N*,将n表示为n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,ai为0或1.记I(n)为上述表示中ai为0的个数(例如5=1×22+0×21+1×20,故I(5)=1),则I(65)=5.

分析 由题分析可知将n表示成a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,实际是将十进制的数转化为二进制的数,易得65=1×26+0×25+0×24+0×23+0×22+0×21+1×20,通过I(n)的意义即得结论.

解答 解:根据题意,65=1×26+0×25+0×24+0×23+0×22+0×21+1×20
∴I(65)=5,
故答案为:5.

点评 本题考查将十进制的数转化为二进制的数,透彻理解I(n)的定义是解决本题的关键,注意转化思想与解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为(  )
A.$\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线$\left\{\begin{array}{l}{x={x}_{0}+at}\\{y={y}_{0}+bt}\end{array}\right.$(t为参数)上两点A,B对应的参数值是t1,t2,则|AB|等于(  )
A.|t1+t2|B.|t1-t2|C.$\sqrt{{a}^{2}+{b}^{2}}$|t1-t2|D.$\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+{b}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=2,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,n=1,2,3,…
(1)计算a2,a3,a4的值,根据计算结果,猜想{an}的通项公式;
(2)用数字归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.试比较nn+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是正三角形ABC内部一点,$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,在三角形ABC内随机撒一粒黄豆,落在三角形AOC内的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)与$\overrightarrow{b}$夹角余弦为(  )
A.$\frac{5}{7}$B.$\frac{11}{14}$C.-$\frac{5}{7}$D.-$\frac{11}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用数学归纳法证明1+$\frac{1}{2}+\frac{1}{3}+…$+$\frac{1}{{2}^{n}-1}<n$(n∈N且n>1),第二步证明中从“k到k+1”时,左端增加的项数是(  )
A.2k+1B.2k-1C.2kD.2k-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若随机变量X~N(1,σ2),且P(X>2)=0.3,则P(X≥0)等于(  )
A.0.7B.0.4C.0.8D.0.6

查看答案和解析>>

同步练习册答案