精英家教网 > 高中数学 > 题目详情
10.试比较nn+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.

分析 本题考查的知识点是归纳推理与数学归纳法,我们可以列出nn+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.

解答 解:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n
当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n
当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n
当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n
根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
证明:①当n=3时,nn+1=34=81>(n+1)n=43=64
即nn+1>(n+1)n成立.
②假设当n=k时,kk+1>(k+1)k成立,即:$\frac{{k}^{k+1}}{(k+1)^{k}}$>1
则当n=k+1时,$\frac{(k+1)^{k+2}}{(k+2)^{k+1}}$=(k+1)($\frac{k+1}{k+2}$)k+1>(k+1)($\frac{k}{k+1}$)k+1=$\frac{{k}^{k+1}}{(k+1)^{k}}$>1
即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,
∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.

点评 本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知x2+y2=2x+8(x,y∈R),则4x2+5y2的最大值为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围的面积为$\frac{1}{12}$,则这个切线方程是.(  )
A.y=-2x-1B.y=-2x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.令g1(x)=g(x),${g_{n+1}}=g({g_n}(x)),n∈{N^+}$,请猜想出gn(x)的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设随机变量X的分布列如下:其中a,b,c成等差数列,若$E(X)=\frac{4}{3}$,则D (X)=$\frac{5}{9}$
X012
Pabc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于n∈N*,将n表示为n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,ai为0或1.记I(n)为上述表示中ai为0的个数(例如5=1×22+0×21+1×20,故I(5)=1),则I(65)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$α∈(0,\frac{π}{4})$,β∈(0,π)且tan(α-β)=$\frac{1}{2}$,tan$β=-\frac{1}{7}$,求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知四棱锥 V-ABCD的底面是边长为2正方形,侧面都是侧棱长为$\sqrt{5}$的等腰三角形,则二面角V-AB-C的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x∈R,若xi=x,i是虚数单位,则x=0.

查看答案和解析>>

同步练习册答案