分析 本题考查的知识点是归纳推理与数学归纳法,我们可以列出nn+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.
解答 解:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,
当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,
当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,
当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,
根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
证明:①当n=3时,nn+1=34=81>(n+1)n=43=64
即nn+1>(n+1)n成立.
②假设当n=k时,kk+1>(k+1)k成立,即:$\frac{{k}^{k+1}}{(k+1)^{k}}$>1
则当n=k+1时,$\frac{(k+1)^{k+2}}{(k+2)^{k+1}}$=(k+1)($\frac{k+1}{k+2}$)k+1>(k+1)($\frac{k}{k+1}$)k+1=$\frac{{k}^{k+1}}{(k+1)^{k}}$>1
即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,
∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.
点评 本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=-2x-1 | B. | y=-2x+1 | C. | y=2x-1 | D. | y=2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| X | 0 | 1 | 2 |
| P | a | b | c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com