精英家教网 > 高中数学 > 题目详情

袋中有红、黄、白三种颜色的球各一个,从中每次取一只,有放回的抽取三次,
求:(1)3只球颜色全相同的概率;
(2)3只球颜色不全相同的概率;
(3)3只球颜色全不相同的概率.

(1)(2)(3)

解析试题分析:红球记作1。黄球记作2,白球记作3.

则(1)  …6分 (2)  …9分   (3)   12分
考点:本小题主要考查古典概型概率的求解.
点评:利用古典概型概率计算公式求概率时,一般都是先将基本事件一一列举出来再求解,而且要注意各个基本事件必须都是等可能的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.
(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是。假设各局比赛结果相互独立。
(Ⅰ)分别求甲队以胜利的概率;
(Ⅱ)若比赛结果为求,则胜利方得分,对方得分;若比赛结果为,则胜利方得分、对方得分。求乙队得分的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5浓度
(微克/立方米)
频数(天)
频率
 第一组
(0,25]
5
0.25
第二组
(25,50]
10
0.5
第三组
(50,75]
3
0.15
第四组
(75,100)
2
0.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)

30
25

10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》。其中规定:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米。某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5浓度
(微克/立方米
频数(天)
频率
第一组
(0,25]
5
0.25
第二组
(25,50]
10
0.5
第三组
(50,75]
3
0.15
第四组
(75,100)
2
0.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据用样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:

(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四名教师被分到甲、乙、丙三所学校参加工作,每所学校至少一名教师.
(Ⅰ)求两名教师被同时分配到甲学校的概率;
(Ⅱ)求两名教师不在同一学校的概率;
(Ⅲ)设随机变量为这四名教师中分配到甲学校的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市为了推动全民健身运动在全市的广泛开展,该市电视台开办了健身竞技类栏目《健身大闯关》,规定参赛者单人闯关,参赛者之间相互没有影响,通过关卡者即可获奖。现有甲、乙、丙人参加当天的闯关比赛,已知甲获奖的概率为,乙获奖的概率为,丙获奖而甲没有获奖的概率为
(Ⅰ)求三人中恰有一人获奖的概率;
(Ⅱ)求三人中至少有两人获奖的概率。

查看答案和解析>>

同步练习册答案