精英家教网 > 高中数学 > 题目详情
18.某企业有员工75人,其中男员工有30人,为作某项调查,拟采用分层抽样的方法抽取容量为20的样本,则女员工应抽取的人数是12.

分析 分层抽样应按各层所占的比例从总体中抽取,即可得出结论.

解答 解:总体的个数是75人,要抽一个20人的样本,则每个个体被抽到的概率是$\frac{20}{75}$=$\frac{4}{15}$,
女员工应选取的人数(75-30)×$\frac{4}{15}$=12人,
故答案为:12.

点评 本题考查分层抽样方法,本题解题的关键是注意在抽样过程中每个个体被抽到的概率相等,这是解题的依据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设z1,z2是复数,则下列结论中正确的是(  )
A.若${z_1}^2+{z_2}^2>0$,则 ${z_1}^2>-{z_2}^2$
B.$|{{z_1}-{z_2}}|=\sqrt{{z_1}^2+{z_2}^2-4{z_1}{z_2}}$
C.${z_1}^2+{z_2}^2=0?{z_1}={z_2}$
D.|z1|2=|$\overline{{z}_{1}}$|2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,将函数f(x)的图象上的每个点的横坐标伸长为原来的2倍,纵坐标不变得到函数g(x)的图象.
(1)求函数f(x)的对称中心的坐标及f(x)的递增区间;
(2)求函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对应的边分别为a,b,c,a-b=bcosC.
(1)求证:sinC=tanB;
(2)若a=1,C为锐角,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线mx+2y+6=0与直线x+(m-1)y+m2-1=0平行,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\overrightarrow a$,$\overrightarrow b$是两个不共线向量,且向量$\overrightarrow a+λ\overrightarrow b$与$-\overrightarrow b+2\overrightarrow a$共线,则λ=(  )
A.0B.$-\frac{1}{2}$C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:解答题

如图,正方形所在的平面与△所在的平面交于平面,且

(1)求证:平面

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线x=$\frac{5π}{18}$是函数f(x)=sin(3x+φ)(-π<φ<0)图象的一条对称轴.
(1)求φ;
(2)求函数y=f(x)+f($\frac{π}{6}$-x),x∈(0,$\frac{π}{3}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线Ax+By+C=0,设P(x0,y0)为直线Ax+By+C=0上一点,
证明:这条直线的方程可以写成A(x-x0)+B(y-y0)=0.

查看答案和解析>>

同步练习册答案