精英家教网 > 高中数学 > 题目详情
3.设$\overrightarrow a$,$\overrightarrow b$是两个不共线向量,且向量$\overrightarrow a+λ\overrightarrow b$与$-\overrightarrow b+2\overrightarrow a$共线,则λ=(  )
A.0B.$-\frac{1}{2}$C.-2D.$\frac{1}{2}$

分析 根据向量共线的等价条件建立方程进行求解即可.

解答 解:∵$\overrightarrow a+λ\overrightarrow b$与$-\overrightarrow b+2\overrightarrow a$共线,
∴设$\overrightarrow a+λ\overrightarrow b$=k($-\overrightarrow b+2\overrightarrow a$),
则$\left\{\begin{array}{l}{1=2k}\\{λ=-k}\end{array}\right.$得$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{λ=-\frac{1}{2}}\end{array}\right.$,
故选:B.

点评 本题主要考查向量共线的应用,根据向量共线的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.命题甲:f(x)在区间(a,b)内递增;命题乙:对任意x∈(a,b),有f'(x)>0.则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲、乙两个同学下棋,若甲获胜的概率0.3,甲、乙下成和棋的概率为0.4,则乙赢的概率为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a:b:c=2:4:3,则△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某企业有员工75人,其中男员工有30人,为作某项调查,拟采用分层抽样的方法抽取容量为20的样本,则女员工应抽取的人数是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=cos(ωx+φ)(ω>0,-π≤φ≤0)为奇函数,且在[-$\frac{π}{4}$,$\frac{3π}{16}$]上单调,则ω的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|sinx|•cosx,则下列说法正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{2}$对称B.f(x)在区间上[$\frac{π}{4}$,$\frac{3π}{4}$]单调递减
C.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)的周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)lnx-$\frac{1}{2}$ax2+ax,a∈R.
(1)当a<0时,讨论函数f(x)的极值点的个数;
(2)若关于x的不等式f(x)≤2ax-x-1恒成立,求整数a的最小值;
(3)对于函数f(x)图象上任意给定的两点A(x1,f(x1))、B(x2,f(x2)),试判断f($\frac{{x}_{1}+{x}_{2}}{2}$)与$\frac{f({x}_{1})-f({x}_{2})}{{x}_{2}-{x}_{1}}$的大小关系(其中f′(x)是函数f(x)的导函数),并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知AD与BC是四面体ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,则四面体ABCD的体积的最大值是(  )
A.$18\sqrt{2}$B.$36\sqrt{2}$C.18D.36

查看答案和解析>>

同步练习册答案