精英家教网 > 高中数学 > 题目详情
15.命题甲:f(x)在区间(a,b)内递增;命题乙:对任意x∈(a,b),有f'(x)>0.则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 命题乙:对任意x∈(a,b),有f'(x)>0,可得f(x)在区间(a,b)内递增,即乙⇒甲.反之不成立,例如取f(x)=x3满足f′(x)≥0因此.在(-2,3)内单调递增.

解答 解:命题乙:对任意x∈(a,b),有f'(x)>0,可得f(x)在区间(a,b)内递增,即乙⇒甲.
反之不成立,例如取f(x)=x3满足f′(x)≥0因此.在(-2,3)内单调递增.
因此甲是乙的必要不充分条件.
故选:B.

点评 本题考查了导数与函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=x3+x2+(a+6)x+a有极大值和极小值,则(  )
A.$a>-\frac{17}{3}$B.$a≥-\frac{17}{3}$C.$a<-\frac{17}{3}$D.$a≤-\frac{17}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|-|x+2|.
(Ⅰ)求不等式-2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,证明:|1-4mn|>2|m-n|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位有500位职工,其中35岁以下的有125人,35~49岁的有280人,50岁以上的有95人,为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取50岁以上职工人数为19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设z1,z2是复数,则下列结论中正确的是(  )
A.若${z_1}^2+{z_2}^2>0$,则 ${z_1}^2>-{z_2}^2$
B.$|{{z_1}-{z_2}}|=\sqrt{{z_1}^2+{z_2}^2-4{z_1}{z_2}}$
C.${z_1}^2+{z_2}^2=0?{z_1}={z_2}$
D.|z1|2=|$\overline{{z}_{1}}$|2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,
需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在
校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x3-3x的单调递减区间为(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆的焦距为8,且椭圆上的点到两个焦点距离之和为10,则该椭圆的标准方程是 (  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1或$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1
C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1或$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\overrightarrow a$,$\overrightarrow b$是两个不共线向量,且向量$\overrightarrow a+λ\overrightarrow b$与$-\overrightarrow b+2\overrightarrow a$共线,则λ=(  )
A.0B.$-\frac{1}{2}$C.-2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案