精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f[f($\frac{1}{2}$)]=(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 由分段函数先求f($\frac{1}{2}$),再代入计算可得f[f($\frac{1}{2}$)]

解答 解:由题意可得f($\frac{1}{2}$)=log2$\frac{1}{2}$=-1,
∴f[f($\frac{1}{2}$)]=f(-1)=3-1=$\frac{1}{3}$,
故选:D.

点评 本题考查分段函数求值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:a1+$\frac{{a}_{2}}{λ}$+$\frac{{a}_{3}}{{λ}^{2}}$+…+$\frac{{a}_{n}}{{λ}^{n-1}}$=n2+2n(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,若bn=$\frac{{{a_n}-(2n+1)•{r^n}}}{{(n+\frac{1}{2})(1+{r^n})}}$(r∈R,r≠-1),求$\lim_{n→∞}{b_n}$
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,是否存在λ≠1,使得不等式(1-λ)Sn+(2n+1)•λn≤3成立,若存在,求实数λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量$\overrightarrow{m}$=(4,1),$\overrightarrow{n}$=(sin2$\frac{A}{2}$,cos2A),且$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$.
(1)求角A的大小;
(2)若2bsinB=(2a-c)sinA+(2c-a)sinC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${({\root{3}{{\root{6}{a^9}}}})^4}{({\root{6}{{\root{3}{a^9}}}})^4}$=a4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
273830373531
332938342836
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、极差,并判断选谁参加比赛更合适.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,a2=5,a5=11.
(1)求数列{an}的通项公式;
(2)令bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,bcosC+ccosB=asinA,则三角形ABC的形状是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在区间[-1,1]上的函数f(x)=$\frac{ax}{1+{x}^{2}}$,且f(1)=-1.
(1)求实数a的值;
(2)证明:函数f(x)在区间(-1,1)上单调递减;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式|3x-1|<5的解集是(-$\frac{4}{3}$,2).

查看答案和解析>>

同步练习册答案