分析 (1)当n≥2时,Sn=4an-1+2,与原式相减可知:an+1=4an+4an-1,整理可知:(an+1-2an)=2(an-2an-1),即bn=2bn-1,b1=a2-2a1=3,可知{bn}是等比数列以3为首项,以2为公比的等比数列;
(2)由(1)可知bn=3•2n-1,根据等比数列及等差数列前n项和公式,即可求得数列{bn+2n-1}的前项和Tn.
解答 解:(1)证明:Sn+1=4an+2,
当n≥2时,Sn=4an-1+2,
两式相减得:an+1=4an+4an-1,
∴(an+1-2an)=2(an-2an-1),
∴bn=2bn-1,
a1+a2=4a1+2,a2=5,
∴b1=a2-2a1=3,
∴{bn}是等比数列以3为首项,以2为公比的等比数列;
bn=3•2n-1,
(2)数列{bn+2n-1}的前项和Tn,
Tn=$\frac{3-3•{2}^{n}}{1-2}$+$\frac{(1+2n-1)•n}{2}$,
=3•2n+n2-3,
∴Tn=3•2n+n2-3.
点评 本题考查等比数列通项公式,考查等比数列和等差数列前n项和公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 10 | C. | -20 | D. | -10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com