精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边分别为a、b、c,已知cos2A-1=
3
2
cos(B+C).
(1)求内角A的大小;
(2)若b=5,△ABC的面积S=5
3
,求sinBsinC的值.
考点:解三角形
专题:计算题,解三角形
分析:(1)由cos2A-1=
3
2
cos(B+C),可得2cos2A+3cosA-2=0,求得cosA的值,进而求得A.
(2)利用三角形面积公式和已知条件求得c,然后利用余弦定理求得a,进而根据正弦定理求得2R,最后代入sinBsinC的表达式中求得答案.
解答: 解:(1)∵cos2A-1=
3
2
cos(B+C),
∴2cos2A+3cosA-2=0,
∴cosA=
1
2

∴∠A=60°
(2)∵S=
1
2
bcsinA=5
3

∴c=4,
∴a=
b2+c2-2bccosA
=
21

∵(2R)2=
a2
sin2A
=28
∴sinBsinC=
bc
4R2
=
5
7
点评:本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用正弦定理完成边角问题的转化和化归.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=3,若对于任意的正整数n都有an+1=2an+3.
(1)设bn=an+3,求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△A′BC中,A′B=BC=2,D,E分别是A′B,A′C的中点,将△A′DE沿线段DE折起到△ADE,使平面ADE⊥平面DBCE.
(Ⅰ)若P,Q分别为AB,EC的中点,证明PQ∥平面AED.
(Ⅱ)若M为DE的中点,求三棱锥E-PMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

过x轴上动点A(a,0),引抛物线y=x2+3的两条切线AP、AQ,切点分别为P、Q.
(Ⅰ)若a=-1,求直线PQ的方程;
(Ⅱ)探究直线PQ是否经过定点,若有,请求出定点的坐标;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={((x,y)||x|≤1,|y|≤1,x,y∈R},B={(x,y)|(x-a)2+(y-b)2≤1,x,y∈R,(a,b)∈A},则集合B所表示图形的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体为一简单组合体,其底面ABCD为菱形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:NE∥平面ABCD;
(2)若∠ADC=120°,且PD=BC=2,求该简单组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+1|+|x+2|+…+|x+2014|+|x-1|+|x-2|+…+|x-2014|(x∈R),四位同学研究得出如下四个命题,其中真命题的有
 

①f(x)是偶函数;
②f(x)在(0,+∞)单调递增;
③不等式f(x)<2014×2015的解集为∅;
④关于实数a的方程f(2a-3)=f(a-1)可能有无数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=5n2+3n+1,则通项an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a4+a7=45,a2+a5+a8=29,则a3+a6+a9等于
 

查看答案和解析>>

同步练习册答案