精英家教网 > 高中数学 > 题目详情
12.某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中m的值并估计居民月均用电量的中位数;
(Ⅱ)从样本里月均用电量不低于700度的用户中随机抽取4户,用X表示月均用电量不低于800度的用户数,求随机变量X的分布列及数学期望.

分析 (Ⅰ)利用小矩形的面积之和为1求解,
(Ⅱ)200户居民月均用电量在[700,800)度的户数是8,月均用电量在[800,900]度的户数是4.
故随机变量X的取值为0,1,2,3,4,求出相应的概率即可.

解答 解:(Ⅰ)1-100×(0.0004+0.0008+0.0021+0.0025+0.0006+0.0004+0.0002)=2m×100,
∴m=0.0015.
设中位数是x度,前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,
而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,
所以400<x<500,$x-400=\frac{0.5-0.48}{0.25}×100$,
故x=408,即居民月均用电量的中位数为408度.
(Ⅱ)200户居民月均用电量在[700,800)度的户数是8,月均用电量在[800,900]度的户数是4.
故随机变量X的取值为0,1,2,3,4,且$P(X=0)=\frac{C_8^4}{{C_{12}^4}}=\frac{70}{495}$,$P(X=1)=\frac{C_4^1•C_8^3}{{C_{12}^4}}=\frac{224}{495}$,$P(X=2)=\frac{C_4^2•C_8^2}{{C_{12}^4}}=\frac{168}{495}$,$P(X=3)=\frac{C_4^3•C_8^1}{{C_{12}^4}}=\frac{32}{495}$,$P(X=3)=\frac{C_4^4•C_8^0}{{C_{12}^4}}=\frac{1}{495}$,
所以随机变量X的分布列为:

X01234
P$\frac{70}{495}$$\frac{224}{495}$$\frac{168}{495}$$\frac{32}{495}$$\frac{1}{495}$
故$E(X)=\frac{224+336+96+4}{495}=\frac{660}{495}=\frac{4}{3}$.

点评 本题考查了统计,离散型随机变量的期望,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知△ABC是边长为1的等边三角形,则$(\overrightarrow{AB}-2\overrightarrow{BC})•(\overrightarrow{BC}+2\overrightarrow{CA})$=(  )
A.-2B.$-\frac{3}{2}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且平面PAC⊥平面ABCD,E为PD的中点,PA=PC,AB=2BC=2,∠ABC=60°.
(Ⅰ)求证:PB∥平面ACE;
(Ⅱ)求证:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.关于函数的对称性有如下结论:对于给定的函数y=f(x),x∈D,如果对于任意的x∈D都有f(a+x)+f(a-x)=2b成立(a,b为常数),则函数f(x)关于点(a,b)对称.
(1)用题设中的结论证明:函数f(x)=$\frac{-2x+1}{x-3}$关于点(3,-2);
(2)若函数f(x)既关于点(2,0)对称,又关于点(-2,1)对称,且当x∈(2,6)时,f(x)=2x+3x,求:
①f(-5)的值;
②当x∈(8k-2,8k+2),k∈Z时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{2(2-a)}{x}+(a+2)lnx-ax-2$.
(Ⅰ)当0<a<2时,求函数f(x)的单调区间;
(Ⅱ)已知a=1,函数$g(x)={x^2}-4bx-\frac{1}{4}$.若对任意x1∈(0,e],都存在x2∈(0,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$,则$\frac{2y}{2x+1}$的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an},{bn}满足${a_1}=1,{a_{n+1}}=1-\frac{1}{{4{a_n}}}$,${b_n}=\frac{2}{{2{a_n}-1}}$,其中n∈N+
(I)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(II)设${c_n}=\frac{{4{a_n}}}{n+1}$,求数列{cncn+2}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$}的前n项和为Sn,则S1•S2•S3…S10=$\frac{1}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=x2+ax+b2,若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,则f(x)的图象全在x轴上方的概率是(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案