精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且平面PAC⊥平面ABCD,E为PD的中点,PA=PC,AB=2BC=2,∠ABC=60°.
(Ⅰ)求证:PB∥平面ACE;
(Ⅱ)求证:平面PBC⊥平面PAC.

分析 (Ⅰ)连接BD,交AC于点O,连接OE,证明OE∥PB,即可证明PB∥平面ACE;
(Ⅱ)证明BC⊥平面PAC,即可证明:平面PBC⊥平面PAC.

解答 证明:(Ⅰ)连接BD,交AC于点O,连接OE,
∵底面ABCD是平行四边形,∴O为BD中点,
又E为PD中点,∴OE∥PB,
又OE?平面ACE,PB?平面ACE,
∴PB∥平面ACE.
(Ⅱ)∵PA=PC,O为AC中点,∴PO⊥AC,
又平面PAC⊥平面ABCD,
平面PAC∩平面ABCD=AC,PO?平面PAC,
∴PO⊥平面ABCD,
又BC?平面ABCD,
∴PO⊥BC.
在△ABC中,AB=2BC=2,∠ABC=60°,
∴$AC=\sqrt{A{B^2}+B{C^2}-2AB•BC•cos∠ABC}$=$\sqrt{{2^2}+{1^2}-2×2×1×\frac{1}{2}}=\sqrt{3}$,
∴AC2=AB2+BC2,∴BC⊥AC.
又PO?平面PAC,AC?平面PAC,PO∩AC=O,∴BC⊥平面PAC,
又BC?平面PBC,∴平面PBC⊥平面PAC.

点评 本题考查线面平行的判定,线面垂直的判定,熟练掌握线线、线面、面面垂直之间的相互转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.
(1)求抛物线的标准方程;
(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点,连结QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,点D为BC的中点;
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)若点E为A1C上的点,且满足$\overrightarrow{{A}_{1}E}$=m$\overrightarrow{EC}$(m∈R),若二面角E-AD-C的余弦值为$\frac{\sqrt{10}}{10}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合A={-2,-1,0,1,2},集合B={x|lg(x+1)>0},则A∩B等于(  )
A.{-1,0,1,2}B.{-1,-2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a>0,b>0,且2a+b=1,且$2\sqrt{ab}-4{a^2}-{b^2}$的最大值是$\frac{{\sqrt{2}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若从区间(0,e)(e为自然对数的底数,e=2.71828…)内随机选取两个数,则这两个数之积小于e的概率为(  )
A.$\frac{2}{e}$B.$\frac{1}{e}$C.1-$\frac{2}{e}$D.1-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知P为抛物线y=2x2上的点,若点P到直线l:4x-y-6=0的距离最小,则点P的坐标为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中m的值并估计居民月均用电量的中位数;
(Ⅱ)从样本里月均用电量不低于700度的用户中随机抽取4户,用X表示月均用电量不低于800度的用户数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知Sn为数列{an}的前n项和,对n∈N*都有Sn=1-an,若bn=log2an,则$\frac{1}{{{b_1}{b_2}}}$+$\frac{1}{{{b_2}{b_3}}}$+…+$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{n}{n+1}$.

查看答案和解析>>

同步练习册答案