精英家教网 > 高中数学 > 题目详情
18.若a>0,b>0,且2a+b=1,且$2\sqrt{ab}-4{a^2}-{b^2}$的最大值是$\frac{{\sqrt{2}-1}}{2}$.

分析 利用$\sqrt{\frac{4{a}^{2}+{b}^{2}}{2}}≥\frac{2a+b}{2}≥\sqrt{2ab}$,可得$\sqrt{2ab}$≤$\frac{1}{2}$,4a2+b2≥$\frac{1}{2}$,即可得出.

解答 解:∵2a+b=1,a>0,b>0,
∴由$\sqrt{\frac{4{a}^{2}+{b}^{2}}{2}}≥\frac{2a+b}{2}≥\sqrt{2ab}$,可得$\sqrt{2ab}$≤$\frac{1}{2}$,4a2+b2≥$\frac{1}{2}$,
∴S=2$\sqrt{ab}$-(4a2+b2)≤$\frac{\sqrt{2}-1}{2}$,当且仅当b=2a=$\frac{1}{2}$时取等号.
∴S的最大值为$\frac{{\sqrt{2}-1}}{2}$,
故答案为:$\frac{{\sqrt{2}-1}}{2}$.

点评 本题考查了基本不等式及其变形应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)=lnx+$\frac{a}{x}$.
(1)求f(x)的单调区间和极值;
(2)若对任意x>0,均有x(2lna-lnx)≤a恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={-2,-1,0,1,2},B={x|-2<x≤2},则A∩B=(  )
A.{-1,0,1,2}B.{-1,0,1}C.{-2,-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 频数 1413 
表2:女生身高频数分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 频数12 
(1)求该校高一女生的人数;
(2)估计该校学生身高在[165,180)的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)学生的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,则$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且平面PAC⊥平面ABCD,E为PD的中点,PA=PC,AB=2BC=2,∠ABC=60°.
(Ⅰ)求证:PB∥平面ACE;
(Ⅱ)求证:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从{2,3,4,5,6}中随机选取一个数为a,从{1,2,3,5}中随机选取一个数为b,则b>a的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{2(2-a)}{x}+(a+2)lnx-ax-2$.
(Ⅰ)当0<a<2时,求函数f(x)的单调区间;
(Ⅱ)已知a=1,函数$g(x)={x^2}-4bx-\frac{1}{4}$.若对任意x1∈(0,e],都存在x2∈(0,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x-$\frac{3}{4}$)ex,g(x)=4x2-4x+mln(2x)(m∈R),g(x)存在两个极值点x1,x2(x1<x2).
(1)求f(x1-x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案