精英家教网 > 高中数学 > 题目详情
13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,则$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.18B.9C.-8D.-6

分析 根据向量加减的几何意义和向量的数量积的运算即可求出.

解答 解:∵$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,
∴$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$,
∴$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\overrightarrow{AC}$($\overrightarrow{AD}$-$\overrightarrow{AC}$)=$\overrightarrow{AC}$($\frac{2}{3}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{2}{3}$$\overrightarrow{AC}$•$\overrightarrow{AB}$-${\overrightarrow{AC}}^{2}$=$\frac{2}{3}$|$\overrightarrow{AC}$|•|$\overrightarrow{AB}$|cos30°-${\overrightarrow{AC}}^{2}$=$\frac{2}{3}$×2$\sqrt{3}$×3×$\frac{3}{2}$-12=6-12=-6,
故选:D.

点评 本题主要考查了向量的基本运算在三角形中的应用,属于基础试题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,抛物线C:y2=8ax的焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是(  )
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mlnx+nx在点(1.f(1))处的切线与直线x+y-2=0平行,且f(1)=-2,其中m,n∈R.
(Ⅰ)求m,n的值,并求出函数f(x)的单调区间;
(Ⅱ)设函数$g(x)=\frac{1}{t}(-{x^2}+2x)$,对于正实数t,若?x0∈[1,e],使得f(x0)+x0≥g(x0)成立,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1,在边长为$2\sqrt{3}$的正方形ABCD中,E、O分别为 AD、BC的中点,沿 EO将矩形ABOE折起使得∠BOC=120°,如图2所示,点G 在BC上,BG=2GC,M、N分别为AB、EG中点.
(Ⅰ)求证:MN∥平面OBC;
(Ⅱ)求二面角 G-ME-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{{(\frac{1}{2})}^{x},x<0}\end{array}\right.$,若方程f(f(x))-$\frac{3}{2}$=0在实数集范围内无解,则实数k的取值范围是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.[0,+∞)D.(-$\frac{1}{2}$,-$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a>0,b>0,且2a+b=1,且$2\sqrt{ab}-4{a^2}-{b^2}$的最大值是$\frac{{\sqrt{2}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=x{e^x}-a(\frac{1}{2}{x^2}+x)(a∈R)$.
(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若?x∈(-2,0),f(x)≤0恒成立,求实数a的取值范围;
(Ⅲ)当a>0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x2-x-2≥0},B={x|0<x<3},则A∩B(  )
A.(0,2]B.[-1,3)C.[2,3)D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过抛物线C:y2=4x的焦点F作直线l将抛物线C于A、B,若|AF|=4|BF|,则直线l的斜率是$±\frac{4}{3}$.

查看答案和解析>>

同步练习册答案