精英家教网 > 高中数学 > 题目详情
3.过抛物线C:y2=4x的焦点F作直线l将抛物线C于A、B,若|AF|=4|BF|,则直线l的斜率是$±\frac{4}{3}$.

分析 由抛物线方程求出抛物线的焦点坐标,设出直线l的方程,和抛物线方程联立,化为关于y的一元二次方程后利用根与系数的关系得到A,B两点纵坐标的和与积,结合|AF|=3|BF|,转化为关于直线斜率的方程求解.

解答 解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),
∴设直线l方程为y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去x得$\frac{k}{4}$y2-y-k=0.
设A(x1,y1),B(x2,y2),
可得y1+y2=$\frac{4}{k}$,y1y2=-4①.
∵|AF|=4|BF|,
∴y1+4y2=0,可得y1=-4y2,代入①得-3y2=$\frac{4}{k}$,且-4y22=-4,
解得y2=±1,解,得k=±$\frac{4}{3}$.
故答案为:$±\frac{4}{3}$.

点评 本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,则$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2x+ax2+bcosx在点$(\frac{π}{2},f(\frac{π}{2}))$处的切线方程为$y=\frac{3π}{4}$.
(Ⅰ)求a,b的值,并讨论f(x)在$[{0,\frac{π}{2}}]$上的增减性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证:$f'(\frac{{{x_1}+{x_2}}}{2})<0$.
(参考公式:$cosθ-cosφ=-2sin\frac{θ+φ}{2}sin\frac{θ-φ}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.满足不等式组$\left\{\begin{array}{l}{(x-y+1)(x+y-3)≤0}\\{2≤y≤3}\end{array}\right.$的点(x,y)组成的图形的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设M为边长为4的正方形ABCD的边BC的中点,N为正方形区域内任意一点(含边界),则$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值为(  )
A.32B.24C.20D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x-$\frac{3}{4}$)ex,g(x)=4x2-4x+mln(2x)(m∈R),g(x)存在两个极值点x1,x2(x1<x2).
(1)求f(x1-x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={x|x2+3x-4>0},B={x|-2<x≤3},且M=A∩B,则有(  )
A.1∈MB.2∈MC.(∁RB)⊆AD.B⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(-1,2),B(3,4),C(4,-6),若抛物线y2=ax的焦点恰好是△ABC的重心,则a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,则目标函数z=2x-y的最小值为-12.

查看答案和解析>>

同步练习册答案