精英家教网 > 高中数学 > 题目详情
13.已知A(-1,2),B(3,4),C(4,-6),若抛物线y2=ax的焦点恰好是△ABC的重心,则a=8.

分析 求出三角形的重心坐标,得到抛物线的焦点坐标,然后求解a即可.

解答 解:A(-1,2),B(3,4),C(4,-6),△ABC的重心(2,0),
抛物线y2=ax的焦点恰好是△ABC的重心,可得$\frac{a}{4}$=2,解得a=8.
故答案为:8.

点评 本题考查抛物线的简单性质的应用,三角形的重心坐标的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x2-x-2≥0},B={x|0<x<3},则A∩B(  )
A.(0,2]B.[-1,3)C.[2,3)D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过抛物线C:y2=4x的焦点F作直线l将抛物线C于A、B,若|AF|=4|BF|,则直线l的斜率是$±\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线2x2-3y2=k(k<0)的焦点坐标是(用k表示)(0,±$\sqrt{-\frac{5k}{6}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-aln(x+2),且f(x)存在两个极值点x1,x2,其中x1<x2
(I)求实数a的取值范围;
(II)证明不等式:$\frac{{f({x_1})}}{x_2}+1<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线a、b和平面α,下面推论错误的是(  )
A.若a⊥α,b?α,则a⊥bB.若a⊥α,a∥b,则b⊥α
C.若a⊥b,b⊥α,则a∥α或a?αD.若a∥α,b?α,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax+4(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+a|x+2|.
(Ⅰ)当a=1时,求不等式f(x)≥5的解集;
(Ⅱ)当a<-1时,若f(x)的图象与x轴围成的三角形面积等于6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为-$\frac{1}{2}$,若动点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,试探究,是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案