精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{{(\frac{1}{2})}^{x},x<0}\end{array}\right.$,若方程f(f(x))-$\frac{3}{2}$=0在实数集范围内无解,则实数k的取值范围是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.[0,+∞)D.(-$\frac{1}{2}$,-$\frac{1}{4}$]

分析 根据题意可得x<0时,f(x)=$(\frac{1}{2})^{x}$>0,即可得到k($\frac{1}{2}$)x+$\frac{1}{2}$=0,方程无解,则k≥0,问题得以解决.再讨论x≥0时的情况.

解答 解:当x<0时,f(x)=$(\frac{1}{2})^{x}$>0,
∴f(f(x))=k($\frac{1}{2}$)x+2,
∴k($\frac{1}{2}$)x+2-$\frac{3}{2}$=0
∴k($\frac{1}{2}$)x+$\frac{1}{2}$=0,
当k≥0时方程无解,
当x≥0时,f(x)=kx+2,
若k≥0,则f(x)=kx+2≥2,
∴f(f(x))=k(f(x))≥2,
∴方程f(f(x))-$\frac{3}{2}$=0,方程无解,
综上所述a≥0.
故选:C.

点评 本题考查了函数的零点与方程的根的关系应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知实数a,b满足0<a<1,-1<b<1,则函数y=$\frac{1}{3}$ax3+ax2+b有三个零点的概率为(  )
A.$\frac{5}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,已知矩形ABCD中,$AB=2,BC=2\sqrt{3}$,点E是边BC上的点,且$CE=\frac{1}{3}CB$,DE与AC相交于点H.现将△ACD沿AC折起,如图2,点D的位置记为D',此时$D'E=\frac{{\sqrt{30}}}{3}$.
(Ⅰ)求证:D'H⊥平面ABC;
(Ⅱ)求二面角H-D'E-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=(1-k)x+\frac{1}{e^x}$.
(Ⅰ)如果f(x)在x=0处取得极值,求k的值;
(Ⅱ)求函数f(x)的单调区间;
(III)当k=0时,过点A(0,t)存在函数曲线f(x)的切线,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,则$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若存在x0∈(0,1],使得对任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1中,D,E分别是AC,CC1的中点,$AB=BC=A{A_1}=\frac{{\sqrt{2}}}{2}AC$.
(1)证明:B1C∥平面A1BD;
(2)求二面角D-A1B-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设M为边长为4的正方形ABCD的边BC的中点,N为正方形区域内任意一点(含边界),则$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值为(  )
A.32B.24C.20D.16

查看答案和解析>>

同步练习册答案