精英家教网 > 高中数学 > 题目详情
8.若从区间(0,e)(e为自然对数的底数,e=2.71828…)内随机选取两个数,则这两个数之积小于e的概率为(  )
A.$\frac{2}{e}$B.$\frac{1}{e}$C.1-$\frac{2}{e}$D.1-$\frac{1}{e}$

分析 由题意,$\left\{\begin{array}{l}{0<x<e}\\{0<y<e}\end{array}\right.$,区域面积为e2,这两个数之积小于e,$\left\{\begin{array}{l}{0<x<e}\\{0<y<e}\\{xy<e}\end{array}\right.$,区域面积为e+${∫}_{1}^{e}\frac{e}{x}dx$=2e,即可得出结论.

解答 解:由题意,$\left\{\begin{array}{l}{0<x<e}\\{0<y<e}\end{array}\right.$,区域面积为e2
这两个数之积小于e,$\left\{\begin{array}{l}{0<x<e}\\{0<y<e}\\{xy<e}\end{array}\right.$,区域面积为e+${∫}_{1}^{e}\frac{e}{x}dx$=2e,
∴这两个数之积小于e的概率为$\frac{2}{e}$,
故选A.

点评 本题主要考查几何概型的概率计算,根据条件求出对应的区域面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=x-alnx+a+\frac{b}{x}$.
(1)若曲线y=f(x)在点(1,f(1))处的切线过点(4,-2),且x=2时,y=f(x)有极值,求实数a,b的值;
(2)若函数g(x)=x•f(x)在区间$[\frac{1}{e},{e^2}]$上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若圆x2+y2-x+my-4=0关于直线x-y=0对称,动点P(a,b)在不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+my≥0\\ y≥0\end{array}\right.$表示的平面区域内部及边界上运动,则$z=\frac{b-2}{a-1}$的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=(1-k)x+\frac{1}{e^x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当k=0时,过点A(0,t)存在函数曲线f(x)的切线,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且平面PAC⊥平面ABCD,E为PD的中点,PA=PC,AB=2BC=2,∠ABC=60°.
(Ⅰ)求证:PB∥平面ACE;
(Ⅱ)求证:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,ABEDEFC为多面体,平面ABED⊥平面ACED,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(1)证明:平面OCB∥平面EFD;
(2)求直线OD与平面OEF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.关于函数的对称性有如下结论:对于给定的函数y=f(x),x∈D,如果对于任意的x∈D都有f(a+x)+f(a-x)=2b成立(a,b为常数),则函数f(x)关于点(a,b)对称.
(1)用题设中的结论证明:函数f(x)=$\frac{-2x+1}{x-3}$关于点(3,-2);
(2)若函数f(x)既关于点(2,0)对称,又关于点(-2,1)对称,且当x∈(2,6)时,f(x)=2x+3x,求:
①f(-5)的值;
②当x∈(8k-2,8k+2),k∈Z时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$,则$\frac{2y}{2x+1}$的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是[1,e2-2].

查看答案和解析>>

同步练习册答案