精英家教网 > 高中数学 > 题目详情
16.已知棱长为$\sqrt{2}$的正方体的俯视图是一个面积为2的正方形,则该正方体的正视图的面积不可能等于(  )
A.$\sqrt{2}-1$B.2C.$\sqrt{2}+1$D.$2\sqrt{2}$

分析 根据题意,画出图形,求出该正方体的正视图面积的取值范围,定义ABCD选项判断即可.

解答 解:根据题意,得;
水平放置的正方体,如图所示;
当正视图为正方形时,其面积最小${(\sqrt{2})}^{2}$=2;
当正视图为对角面时,其面积最大为$\sqrt{2}$×$\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{2})}^{2}}$=2$\sqrt{2}$.
∴满足棱长为$\sqrt{2}$的正方体的正视图面积的范围为[2,2$\sqrt{2}$].
∴B、C、D都有可能,
A中$\sqrt{2}$-1<2,∴A不可能.
故选:A.

点评 本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设数列{xn}的各项都为正数且x1=1.如图,△ABC所在平面上的点Pn (n∈N*)均满足△PnAB与△PnAC的面积比为3:1,若$\overrightarrow{{P_n}A}=\frac{1}{3}{x_{n+1}}\overrightarrow{{P_n}B}-(2{x_n}+1)\overrightarrow{{P_n}C}$,则x5的值为(  )
A.31B.33C.61D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知关于x的不等式|x-1|-|x+a|≥8的解集不是空集,则a的取值范围是(  )
A.a≤-9B.a≥7C.-9≤a≤7D.a≤-9或a≥7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(1,2sinA),$\overrightarrow{n}$=(sinA,1+cosA),满足$\overrightarrow{m}∥\overrightarrow{n}$,求A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的中心为坐标原点O,一个短轴端点$({-\sqrt{2},0})$,短轴端点和焦点所组成四边形为正方形,直线l与y轴交于点Q(0,t),与椭圆C交于相异两点A、B,$\overrightarrow{AQ}=2\overrightarrow{QB}$
(1)求椭圆的方程;  
(2)求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设关于x、y的不等式组$\left\{\begin{array}{l}{3x-4≥0}\\{(y-1)(3x+y-6)≤0}\end{array}\right.$表示的平面区域为D,已知点O(0,0)、A(1,0),点M是D上的动点,$\overrightarrow{OA}$$•\overrightarrow{OM}$=λ|$\overrightarrow{OM}$|,则λ的取值范围是($\frac{\sqrt{10}}{10}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若lnx-ax<0在(0,+∞)上恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设A=(-∞,3],B=[a,10),若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方体ABCD-A1B1C1D1的棱长为1,底面ABCD的对角线BD在平面α内,则正方体在平面α内的影射构成的图形面积的取值范围是$[1,\sqrt{3}]$.

查看答案和解析>>

同步练习册答案