精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
(Ⅰ)已知函数上具有单调性,求实数的取值范围;
(Ⅱ)已知向量两两所成的角相等,且,求

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)因为函数是二次函数,其图象对称轴为 
上具有单调性,
所以,      
解得
故实数的取值范围是.   
(Ⅱ)当 向量两两所成的角为时,=  
当 向量两两所成的角为时,
=
=       
所以=
= 
考点:二次函数的性质 向量运算
点评:第一问中考查二次函数的性质和应用,是基础题.解题的关键是灵活应用二次函数的性质,第二问中主要把握好向量模和数量积间的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若不等式的解集为,求的取值范围;
(2)解关于的不等式
(3)若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数满足下列条件:①当时,的最小值为,且图像关于直线对称;②当时,恒成立.
(1)求的值;  
(2)求的解析式;
(3)若在区间上恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)某旅游景点预计2013年1月份起前个月的旅游人数的和(单位:万人)与的关系近似满足已知第月的人均消费额(单位:元)与的近似关系是
(1)写出2013年第x月的旅游人数(单位:万人)与x的函数关系式;
(2)试问2013年哪个月的旅游消费总额最大,最大旅游消费额为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段与两腰长的和)要最小.

(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?
(2)如防洪堤的高限制在的范围内,外周长最小为多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)判断函数在定义域上的单调性;
(2)利用题(1)的结论,,求使不等式上恒成立时的实数的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数为偶函数,且在上为增函数.
(1)求的值,并确定的解析式;
(2)若,是否存在实数使在区间上的最大值为2,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
有甲、乙两种商品,经销这两种商品所获的利润依次为(万元)和(万元),它们与投入的资金(万元)的关系,据经验估计为:,  今有3万元资金投入经销甲、乙两种商品,为了获得最大利润,应对甲、乙两种商品分别投入多少资金?总共获得的最大利润是多少万元?

查看答案和解析>>

同步练习册答案