精英家教网 > 高中数学 > 题目详情

【题目】某车间有50名工人,要完成150件产品的生产任务,每件产品由3A 型零件和1B 型零件配套组成.每个工人每小时能加工5A 型零件或者3B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*

1)设完成A 型零件加工所需时间为小时,写出的解析式;

2)为了在最短时间内完成全部生产任务,x应取何值?

【答案】1)(232

【解析】

(1)生产150件产品,需加工A型零件450个,则完成A型零件加工所需时间(其中,

2)生产150件产品,需加工B型零件150个,则完成B型零件加工所需时间(其中,);

设完成全部生产任务所需时间小时,则中的较大者,

,则,解得

所以,当时,;当时,

时,,故上单调递减,

上的最小值为(小时);

时,,故上单调递增,

的最小值为(小时);

上的最小值为为所求,

所以,为了在最短时间内完成生产任务,应取32

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,底面是等腰梯形,,点的中点,以为边作正方形,且平面平面.

1)证明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列判断正确的是(

A.的极大值点

B.函数有且只有1个零点

C.存在正实数,使得恒成立

D.对任意两个正实数,且,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,曲线C的参数方程为a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.

1)求C的普通方程和l的倾斜角;

2)设点lC交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)若,解不等式

(Ⅱ)当时,函数的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N个人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6.

1)根据此频率分布直方图求N

2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为X,求X的分布列、均值及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:

消费次第

收费比率

该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:

消费次数

人数

假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:

1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;

2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,在中,边上的高,且的中点.现沿进行翻折,使得平面平面,得到的图形如图(2)所示.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是( )

A.”是“”的充分不必要条件

B.函数的最小值为2

C.时,命题“若,则”为真命题

D.命题“”的否定是“

查看答案和解析>>

同步练习册答案