【题目】如图,底面是等腰梯形,,点为的中点,以为边作正方形,且平面平面.
(1)证明:平面平面.
(2)求二面角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)先证明四边形是菱形,进而可知,然后可得到平面,即可证明平面平面;
(2)记AC,BE的交点为O,再取FG的中点P.以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系,分别求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,进而可求出二面角的正弦值.
(1)证明:因为点为的中点,,所以,
因为,所以,所以四边形是平行四边形,
因为,所以平行四边形是菱形,所以,
因为平面平面,且平面平面,所以平面.
因为平面,所以平面平面.
(2)记AC,BE的交点为O,再取FG的中点P.由题意可知AC,BE,OP两两垂直,故以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系.
因为底面ABCD是等腰梯形,,所以四边形ABCE是菱形,且,
所以,
则,设平面ABF的法向量为,
则,不妨取,则,
设平面DBF的法向量为,
则,不妨取,则,
故.
记二面角的大小为,故.
科目:高中数学 来源: 题型:
【题目】设函数,其中a为常数:e≈2.71828为自然对数的底数.
(1)求曲线y=f(x)在x=0处的切线l在两坐标轴上的截距相等,求a的值;
(2)若x>0,不等式恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为4,点P(2,3)在椭圆上.
(1)求椭圆C的方程;
(2)过点P引圆的两条切线PA,PB,切线PA,PB与椭圆C的另一个交点分别为A,B,试问直线AB的斜率是否为定值?若是,求出其定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,沿河有、两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为(万元),表示污水流量,铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇和城镇的污水流量分别为,,、两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题:
(1)若在城镇和城镇单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇到拟建厂的距离为千米,求联合建厂的总费用与的函数关系式,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*)
(1)设完成A 型零件加工所需时间为小时,写出的解析式;
(2)为了在最短时间内完成全部生产任务,x应取何值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com