精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中a为常数:e≈2.71828为自然对数的底数.

1)求曲线yfx)在x0处的切线l在两坐标轴上的截距相等,求a的值;

2)若x0,不等式恒成立,求a的取值范围.

【答案】(1)a2(2)a∈(01]

【解析】

1)求导得到,求出切线方程为,利用截距相等得到答案。

2)讨论两种情况,得到,设函数,讨论两种情况得到答案。

1fxf0)=1af0)=1

故切线方程是y=(1ax+1,由已知得1,解得:a2

2)当a0时,取x0∈(0),fx00,而0与已知矛盾

a0时,对x0fx

11所以ax+1ex

设函数gx)=exax1x0),则gx)=exax0),

①当0a≤1时,gx)>0恒成立,

gx)在(0+∞)递增,gx)>g0)=0,(x0),

从而不等式ax+1ex对任意x0恒成立,于是fx对任意x0恒成立,

②当a时,由gx)<0,得0xlna,故gx)在(0lna)递减,

glna)<g0)=0,这与gx)>0对任意x0恒成立矛盾,

综上所述:a∈(01]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左顶点为,离心率为,过点的直线与椭圆交于另一点,点轴上的一点.

(1)求椭圆的标准方程;

(2)若是以点为直角顶点的等腰直角三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉某科技公司为提高市场销售业绩,现对某产品在部分营销网点进行试点促销活动.现有两种活动方案,在每个试点网点仅采用一种活动方案,经统计,20181月至6月期间,每件产品的生产成本为10元,方案1中每件产品的促销运作成本为5元,方案2中每件产品的促销运作成本为2元,其月利润的变化情况如图①折线图所示.

1)请根据图①,从两种活动方案中,为该公司选择一种较为有利的活动方案(不必说明理由);

2)为制定本年度该产品的销售价格,现统计了8组售价xi(单位:元/件)和相应销量y(单位:件)(i12…8)并制作散点图(如图②),观察散点图可知,可用线性回归模型拟合yx的关系,试求y关于x的回归方程(系数精确到整数);

参考公式及数据:40660xiyi206630x12968

3)公司策划部选1200lnx+5000x3+1200两个模型对销量与售价的关系进行拟合,现得到以下统计值(如表格所示):

x3+1200

52446.95

122.89

124650

相关指数

R

R

相关指数:R21

i)试比较R12R22的大小(给出结果即可),并由此判断哪个模型的拟合效果更好;

ii)根据(1)中所选的方案和(i)中所选的回归模型,求该产品的售价x定为多少时,总利润z可以达到最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左、右顶点分别为.右焦点为,过点且斜率为的直线交椭圆于另一点.

(1)求椭圆的离心率;

(2)若,设直线,延长交直线于点,线段的中点为,求证:点关于直线的对称点在直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且,二面角的平面角大小为FBE的中点,求证:

1平面ABC

2平面EDB

3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019举国上下以各种不同的形式共庆新中国成立70周年,某商家计划以我和我的祖国"为主题举办一次有奖消费活动,此商家先把某品牌酒重新包装,包装时在每瓶酒的包装盒底部随机印上""“三个字样中的一个,之后随机装箱(14瓶),并规定:若顾客购买的一箱酒中的四瓶酒底部所印的字为同一个字,则此顾客获得一等奖,此箱洒可优惠36元;若顾客购买的一箱酒的四瓶洒底部集齐了"“"二字且仅有此二字,则此顾客获得二等奖,此箱洒可优惠27元;若顾客购买的一箱酒中的四瓶酒的底部集齐了”“"“三个字,则此顾客获得三等奖,此箱酒可优惠18元(注:每箱单独兑奖,箱与箱之间的包装盒不能混).

1)①设为顾客购买一箱酒所优惠的钱数,求的分布列;

②若不计其他损耗,商家重新包装后每箱酒提价a元,试问a取什么范围时才能使活动后的利润不会小于搞活动之前?

2)若顾客一次性购买3箱酒,并都中奖,可再加赠一张《我和我的祖国》电影票,顾客小张一次性购买3箱酒,共优惠了72元,试问小张能否得到电影票,概率多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若关于的方程有唯一实数解,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是等腰梯形,,点的中点,以为边作正方形,且平面平面.

1)证明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案