分析 (1)当m=n=1时,确定函数的单调性,即可求f(x)的最小值;
(2)确定函数的单调性,即可求f(x)的最小值,利用f(x)的最小值为2,结合基本不等式证明:$\frac{1}{m}$+$\frac{2}{n}$≥2.
解答 解:(1)∵当m=n=1时,$f(x)=\left\{{\begin{array}{l}{-3x,\;\;x<-1}\\{-x+2,\;\;-1≤x≤\frac{1}{2}}\\{3x,\;x>\frac{1}{2}}\end{array}}\right.$,
∴f(x)在$({-∞,\frac{1}{2}})$是减函数,在$({\frac{1}{2},+∞})$是增函数,
∴当$x=\frac{1}{2}$时,f(x)取最小值$\frac{3}{2}$…(6分)
证明:(2)∵$f(x)=\left\{{\begin{array}{l}{-3x-m+n,x≤-m}\\{-x+m+n,-m<x<\frac{n}{2}}\\{3x+m-n,x≥\frac{n}{2}}\end{array}}\right.$,
∴f(x)在$({-∞,\frac{n}{2}})$是减函数,在$({\frac{n}{2},+∞})$是增函数,
∴当$x=\frac{n}{2}$时,f(x)取最小值$f({\frac{n}{2}})=m+\frac{n}{2}$.
∵m,n∈R,
∴$\frac{1}{m}+\frac{2}{n}=\frac{1}{2}({\frac{1}{m}+\frac{2}{n}})({m+\frac{n}{2}})=\frac{1}{2}({2+\frac{2m}{n}+\frac{n}{2m}})≥2$…(12分)
点评 本题考查绝对值函数,考查函数的单调性与最值,考查基本不等式的运用,正确转化是关键.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 由a1=1,an=3n-1,求出s1,s2,s3,猜出数列{an}的前n项和的表达式 | |
| B. | 由于f(x)=xsinx满足f(-x)=-f(x)对?x∈R都成立,推断f(x)=xsinx为偶函数 | |
| C. | 由圆x2+y2=1的面积S=πr2,推断:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面积S=πab | |
| D. | 由平面三角形的性质推测空间四面体的性质 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 61 | B. | 90 | C. | 91 | D. | 127 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com