精英家教网 > 高中数学 > 题目详情
7.已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)当m=n=1时,求f(x)的最小值;
(2)若f(x)的最小值为2,求证:$\frac{1}{m}$+$\frac{2}{n}$≥2.

分析 (1)当m=n=1时,确定函数的单调性,即可求f(x)的最小值;
(2)确定函数的单调性,即可求f(x)的最小值,利用f(x)的最小值为2,结合基本不等式证明:$\frac{1}{m}$+$\frac{2}{n}$≥2.

解答 解:(1)∵当m=n=1时,$f(x)=\left\{{\begin{array}{l}{-3x,\;\;x<-1}\\{-x+2,\;\;-1≤x≤\frac{1}{2}}\\{3x,\;x>\frac{1}{2}}\end{array}}\right.$,
∴f(x)在$({-∞,\frac{1}{2}})$是减函数,在$({\frac{1}{2},+∞})$是增函数,
∴当$x=\frac{1}{2}$时,f(x)取最小值$\frac{3}{2}$…(6分)
证明:(2)∵$f(x)=\left\{{\begin{array}{l}{-3x-m+n,x≤-m}\\{-x+m+n,-m<x<\frac{n}{2}}\\{3x+m-n,x≥\frac{n}{2}}\end{array}}\right.$,
∴f(x)在$({-∞,\frac{n}{2}})$是减函数,在$({\frac{n}{2},+∞})$是增函数,
∴当$x=\frac{n}{2}$时,f(x)取最小值$f({\frac{n}{2}})=m+\frac{n}{2}$.
∵m,n∈R,
∴$\frac{1}{m}+\frac{2}{n}=\frac{1}{2}({\frac{1}{m}+\frac{2}{n}})({m+\frac{n}{2}})=\frac{1}{2}({2+\frac{2m}{n}+\frac{n}{2m}})≥2$…(12分)

点评 本题考查绝对值函数,考查函数的单调性与最值,考查基本不等式的运用,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若三个实数成等比数列,第一个数与第三个数的积为4,三个数的和为3,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)的定义域为R,f(-x)=f(x),f(x)=f(2-x),当x∈[0,1]时,f(x)=x3,则函数g(x)=|cos(πx)|-f(x)在区间[-$\frac{1}{2}$,$\frac{3}{2}$]上的所有零点的和为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列推理是归纳推理的是(  )
A.由a1=1,an=3n-1,求出s1,s2,s3,猜出数列{an}的前n项和的表达式
B.由于f(x)=xsinx满足f(-x)=-f(x)对?x∈R都成立,推断f(x)=xsinx为偶函数
C.由圆x2+y2=1的面积S=πr2,推断:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面积S=πab
D.由平面三角形的性质推测空间四面体的性质

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,第7幅图的蜂巢总数为(  )
A.61B.90C.91D.127

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设n∈N*,f(n)=5n+2×3n-1+1,通过计算n=1,2,3,4时,f(n)的值,可以猜想f(n)能被最大整数8整除.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若?x0∈R,使得f(x0)+f(x0+5)-m2<4m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式|2x-3|<5的解集为(  )
A.(-1,4)B.(-∞,-1)∪(4,+∞)C.(-∞,4)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆O的半径长为3,圆内一点A到圆心O的距离是$\sqrt{3}$,点P是圆上的动点,当∠OPA取最大值时,PA=$\sqrt{6}$.

查看答案和解析>>

同步练习册答案