精英家教网 > 高中数学 > 题目详情
12.设n∈N*,f(n)=5n+2×3n-1+1,通过计算n=1,2,3,4时,f(n)的值,可以猜想f(n)能被最大整数8整除.

分析 通过计算n=1,2,3,4时,f(n)的值,可以猜想结论.

解答 解:由题意,f(1)=8,f(2)=32,f(3)=144,f(4)=680,
∴f(n)能被最大整数8整除.
故答案为:8

点评 本题考查归纳推理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知各项均为正数的数列{an}的前n项和满足Sn>1,6Sn=(an+1)(an+2).
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)求证:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=4,AC=2$\sqrt{3}$,BD=2,又点E在侧棱PC上,且PC⊥平面BDE.
(1)求线段CE的长;
(2)求点A到平面PDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)当m=n=1时,求f(x)的最小值;
(2)若f(x)的最小值为2,求证:$\frac{1}{m}$+$\frac{2}{n}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|2a-x|(a∈R).
(1)当a=2时,解不等式f(x)>6-|3x-2|;
(2)若对?∈R,f(x)+x>5恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示的几何体中,△ABC是正三角形,且EA⊥平面ABC,DB⊥平面ABC,M是AB的中点.
(Ⅰ)求证:CM⊥EM;
(Ⅱ)若AB=2$\sqrt{2}$,AE=1,BD=2,求DE与平面EMC所成角的正切值;
(Ⅲ)在(Ⅱ)的条件下,求点M到平面CDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于x的不等式|x-a|≤b的解集为{x|-1≤x≤3}.
(1)求a,b的值;
(2)若(y-a)(y-b)<0,求z=$\frac{1}{y-a}$+$\frac{1}{b-y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|x-$\sqrt{2}$|-|x+$\sqrt{2}$|最大值为M,
(1)求实数M的值;
(2)若?x∈R,f(x)≥t2-(2+$\sqrt{2}$)t恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案