分析 (1)解绝对值不等式求得不等式|x-a|≤b的解集,再根据不等式|x-a|≤b的解集为{x|-1≤x≤3},求得a,b的值.
(2)把要求的式子变形,再利用基本不等式,求得z的最小值.
解答 解:(1)由题意可得b>0,
由不等式|x-a|≤b,可得-b≤x-a≤b,
∴a-b≤x≤a+b.
再根据不等式|x-a|≤b的解集为{x|-1≤x≤3},
可得$\left\{\begin{array}{l}{a-b=-1}\\{a+b=3}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$.
(2)由(1)知(y-1)(y-2)<0,
∴1<y<2.
z=$\frac{1}{y-a}$+$\frac{1}{b-y}$=($\frac{1}{y-1}$+$\frac{1}{2-y}$)•[(y-1)+(2-y)]=2+$\frac{2-y}{y-1}$+$\frac{y-1}{2-y}$,
∵1<y<2,
∴y-1>0,2-y>0,
∴z≥2+2$\sqrt{1}$=4,
当且仅当 $\frac{2-y}{y-1}$=$\frac{y-1}{2-y}$,即 y=$\frac{3}{2}$时,等号成立,
此时,z取得最小值4.
点评 本题主要考查绝对值不等式的解法,基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\sqrt{7}$ | C. | $\sqrt{13}$ | D. | $\sqrt{10+3\sqrt{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2] | B. | (-∞,-2) | C. | (-∞,-6] | D. | (-∞,-6) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com