精英家教网 > 高中数学 > 题目详情
13.设Sn为数列{an}的前项和,已知a1≠0,2an-a1=S1•Sn,n∈N+
(1)求a1,并求证数列{an}为等比数列;
(2)求数列{nan}的前n项和.

分析 (1)S1=a1≠0,当n=1时,2a1-a1=a1•a1,解得a1,n≥2时,an=Sn-Sn-1=2an-1,即可证明.
(2)an=2n-1.nan=n•2n-1.利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)∵S1=a1≠0,∴当n=1时,2a1-a1=a1•a1,解得a1=1,
下面证明:数列{an}为等比数列.n≥2时,an=Sn-Sn-1=$\frac{2{a}_{n}-{a}_{1}}{{S}_{1}}$-$\frac{2{a}_{n-1}-{a}_{1}}{{S}_{1}}$,化为:an=2an-1
∴数列{an}为等比数列,公比为2,首项为1.
(2)an=2n-1
nan=n•2n-1
∴数列{nan}的前n项和Tn=1+2×2+3×22+…+n•2n-1
∴2Tn=2+2×22+…+(n-1)•2n-1+n•2n
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n
∴Tn=(n-1)•2n+1.

点评 本题考查了“错位相减法”、等比数列的定义与通项公式求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若a>b>0,则下列不等式一定成立的是(  )
A.$a+\frac{1}{b}>b+\frac{1}{a}$B.$\frac{b}{a}>\frac{b+1}{a+1}$C.$a-\frac{1}{b}>b-\frac{1}{a}$D.$\frac{2a+b}{a+2b}>\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x+ax2+bcosx函数在点$({\frac{π}{2},f({\frac{π}{2}})})$处的切线为y=$\frac{3π}{4}$.
(1)求函数a,b的值,并求出f(x)在[0,π]上的单调区间;
(2)若f(x1)=f(x2),且0<x1<x2<π,求证:$f'({\frac{{{x_1}+{x_2}}}{2}})<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$则sin2x等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,且2acosB=3ccosA-2bcosA.
(1)若b=$\sqrt{5}$sinB,求a;
(2)若a=$\sqrt{6}$,△ABC的面积为$\frac{\sqrt{5}}{2}$,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$则z=-$\frac{5}{4x+3y}$的最大值为(  )
A.-$\frac{15}{8}$B.-$\frac{5}{4}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为推行“新课堂”教学法,某化学老师分别用原传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图.记成绩不低于70分者为“成绩优良”.
分数[50,59)[60,69)[70,79)[80,89)[90,100)
甲班频数56441
乙班频数13655
(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成
绩优良与教学方式有关”?
 甲班乙班总计
成绩优良   
成绩不优良   
总计   
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
独立性检验临界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法来抽取8人进行考核,在这8 人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x,y满足条件$\left\{\begin{array}{l}x-y≤2\\ x+y≥2\\ y≤2\end{array}$,则z=$\frac{y-x}{x-6}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=-3,且α是第二象限的角.
(1)求cosα的值;
(2)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

同步练习册答案