【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为( )
A.![]()
B.(2﹣
,2+
)
C.[1,3]
D.(1,3)
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,
,F为线段DE上的一点. ![]()
(1)求证:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点
且离心率为
的椭圆
的中心在原点,焦点在
轴上.
(1)求椭圆
的方程;
(2)设点
是椭圆的左准线与
轴的交点,过点
的直线
与椭圆
相交于
两点,记椭圆
的左,右焦点分别为
,上下两个顶点分别为
.当线段
的中点落在四边形
内(包括边界)时,求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的部分图像如图所示,将
的图象向右平移
个单位长度后得到函数
的图象.
![]()
(1)求函数
的解析式;
(2)在
中,角A,B,C满足
,且其外接圆的半径R=2,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的图象与x轴有且仅有一个交点,求b2+c2+2的取值范围;
(2)在b≥0的条件下,若f(x)的定义域[﹣1,0],值域也是[﹣1,0],符合上述要求的函数f(x)是否存在?若存在,求出f(x)的表达式,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正三角形
所在平面与梯形
所在平面垂直,
,
,
为棱
的中点.
![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)若直线
与平面
所成角的正切值为
,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com