精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.

(1)若直线的斜率为,判断直线与曲线的位置关系;

(2)求交点的极坐标().

【答案】(1)见解析;(2)

【解析】

(1)利用加减消元法和平方消元法消去参数t,可把直线l与曲线C1的参数方程化为普通方程,结合直线与圆的位置关系,可得结论;

(2)将曲线C2的极坐标方程化为直角坐标方程,求出交点的坐标,进而可化为极坐标.

(1)斜率为时,直线的普通方程为

.

消去参数,化为普通方程得,②

则曲线是以为圆心,为半径的圆,

圆心到直线的距离

故直线与曲线(圆)相交.

(2)的直角坐标方程为

,解得

所以的交点的极坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,记随机变量表示质量在内的芒果个数,求的分布列及数学期望.

(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以短轴端点和焦点为顶点的四边形的周长为.

(Ⅰ)求椭圆的标准方程及焦点坐标.

(Ⅱ)过椭圆的右焦点作轴的垂线,交椭圆于两点,过椭圆上不同于点的任意一点,作直线分别交轴于两点.证明:点的横坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为矩形,分别为线段上一点,且.

(1)证明:

(2)证明:平面,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD是正三角形,侧面底面ABCDMPD的中点.

1)求证:平面PCD

2)求侧面PBC与底面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分

布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C=2pxp>0)的准线方程为x=-,F为抛物线的焦点

I)求抛物线C的方程;

II)若P是抛物线C上一点,点A的坐标为(,2,的最小值;

III)若过点F且斜率为1的直线与抛物线C交于MN两点,求线段MN的中点坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,为抛物线上三点,且点在第一象限,直线经过点与抛物线在点处的切线平行,点的中点.

(1)证明:轴平行;

(2)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.

(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;

(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.

查看答案和解析>>

同步练习册答案