精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
x+y≤4
x-y≤2
x≥0,y≥0
,则2x+y的最大值是(  )
A、2B、4C、7D、8
考点:简单线性规划
专题:不等式的解法及应用
分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件
x+y≤4
x-y≤2
x≥0,y≥0
的可行域,再用角点法,求出目标函数的最大值.
解答: 解:满足约束条件
x+y≤4
x-y≤2
x≥0,y≥0
的可行域如下图中阴影部分所示:

∵目标函数Z=2x+y,
∴ZO=0,ZA=4,ZB=7,ZC=4,
故2x+y的最大值是7,
故选:C
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若?x∈R,f(x)>f(x-1),则正实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f1(x)=x2,f2(x)=2(x-x2),f3(x)=
1
3
|sin2πx|
ai=
i
99
,i=0,1,2,…,99.记Ik=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)丨+…+|fk(a99)-fk(a98)|,k=1,2,3,则(  )
A、I1<I2<I3
B、I2<I1<I3
C、I1<I3<I2
D、I3<I2<I1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是空间中两个相互垂直的单位向量,且|
c
|=3,
c
a
=1,
c
b
=2,则对于任意实数t1,t2,|
c
-t1
a
-t2
b
|的最小值是(  )
A、
2
B、
3
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈(0,
π
2
),β∈(0,
π
2
),且tanα=
1+sinβ
cosβ
,则(  )
A、3α-β=
π
2
B、3α+β=
π
2
C、2α-β=
π
2
D、2α+β=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意复数ω1,ω2,定义ω121
.
ω 
2,其中
.
ω
2是ω2的共轭复数,对任意复数z1,z2,z3有如下命题:
①(z1+z2)*z3=(z1*z3)+(z2*z3
②z1*(z2+z3)=(z1*z2)+(z1*z3
③(z1*z2)*z3=z1*(z2*z3);
④z1*z2=z2*z1
则真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案