精英家教网 > 高中数学 > 题目详情
20.已知数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R,q≠1,q≠0)的等比数列.若a1=(d-2)2,a3=d2,b1=(q-2)2,b3=q2
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对任意自然数n均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+$\frac{{c}_{3}}{3{b}_{3}}$+…+$\frac{{c}_{n}}{n{b}_{n}}$=1+an+1,求数列{cn}的通项公式及前n项和Tn

分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用递推关系、“错位相减法”、等比数列的前n项和公式即可得出.

解答 解:(1)∵a3-a1=2d,
∴d2-(d-2)2=2d,解得 d=2.
∴a1=0,
∴an=2(n-1).
∵$\frac{{b}_{3}}{{b}_{1}}$=q2,∴q2=$\frac{{q}^{2}}{(q-2)^{2}}$.
∵q≠0,q≠1,
∴q=3.
又b1=1,∴bn=3n-1
(2)由题设知$\frac{{c}_{1}}{{b}_{1}}$=a2+1,∴.
当n≥2时,$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+$\frac{{c}_{3}}{3{b}_{3}}$+…+$\frac{{c}_{n}}{n{b}_{n}}$=1+an+1
$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+$\frac{{c}_{3}}{3{b}_{3}}$+…+$\frac{{c}_{n-1}}{(n-1){b}_{n-1}}$=1+an
两式相减,得$\frac{{c}_{n}}{n{b}_{n}}$=an+1-an=2.
∴cn=2nbn=2n•3n-1,(c1=3不适合).
∴cn=$\left\{\begin{array}{l}{3,n=1}\\{2n•{3}^{n-1},n≥2}\end{array}\right.$.
∴Tn=3+4×3+6×32+8×33+…+2n•3n-1
3Tn=9+4×32+…+2(n-1)•3n-1+2n•3n
两式相减,得
-2Tn=6+2×32+2×33+…+2×3n-1-2n•3n=$\frac{2×3({3}^{n-1}-1)}{3-1}$-2n•3n=-3+(1-2n)•3n
∴Tn=$\frac{3}{2}$+$\frac{1}{2}(2n-1)•{3}^{n}$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆的焦点在x轴,离心率e=$\frac{1}{2}$,短轴长为2$\sqrt{5}$,直线y=x+m与椭圆相交于A、B两点,且|AB|=$\frac{4\sqrt{5}}{5}$.
(1)求椭圆的方程; 
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2-(3+2a)x+6a,其中a>0.若有实数b使得$\left\{\begin{array}{l}{f(b)≤0}\\{f{(b}^{2}+1)≤0}\end{array}\right.$成立,则实数a的取值范围是(0,$\frac{\sqrt{2}}{2}$]∪[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=lg(3x3-$\frac{5}{2}$)的零点所在的区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列判断错误的是(  )
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“?x∈R,x3-x2≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线x2=2py(p>0),过其焦点$F(0,\frac{p}{2})$的直线l与抛物线相交于A,B两点,设A,B两点的坐标分别为A(x1,y1),B(x2,y2).求证:
(1)x1•x2=-p2
(2)y1•y2=$\frac{p^2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=3x+λ•3-x(λ∈R).
(1)当λ=-4时,求函数f(x)的零点;
(2)若函数f(x)为偶函数,求实数λ的值;
(3)若不等式f(x)≤6在x∈[0,2]上恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,将OA绕坐标原点逆时针旋转$\frac{π}{2}$至OB.
(1)用α表示A,B两点的坐标;
(2)M为x轴上异于O的点,若MA⊥MB,求点M横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是正数组成的等比数列,求证:lga1+lga3+lga5+…+lga2n-1=nlgan(n∈N*

查看答案和解析>>

同步练习册答案