精英家教网 > 高中数学 > 题目详情
15.下列判断错误的是(  )
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“?x∈R,x3-x2≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题
D.若p∧q为假命题,则p,q均为假命题

分析 由充分必要条件的判断方法判断A;写出全称命题的否定判断B;由互为逆否命题的两个命题共真假判断C;由复合命题的直接判断判断D.

解答 解:由am2<bm2,两边同时乘以$\frac{1}{{m}^{2}}$得a<b,反之,由a<b,不一定有am2<bm2,如m2=0.
∴“am2<bm2”是”a<b”的充分不必要条件.故A正确;
命题“?x∈R,x3-x2≤0”的否定是“?x∈R,x3-x2-1>0”.故B正确;
“若a=1,则直线x+y=0和直线x-ay=0互相垂直”正确,其逆否命题正确;
若p∧q为假命题,则p,q中至少一个为假命题.故D错误.
故选:D.

点评 本题考查命题的自己判断与应用,考查了复合命题的真假判断,考查命题的否定和逆否命题,训练了充分必要条件的判断方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B.已知|AB|=$\frac{\sqrt{3}}{2}$|F1F2|,MF2|=2$\sqrt{2}$,
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{{2x}^{2}-a}{x-1}$(a<2)在区间(1,+∞)上的最小值为6,则实数a的值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$f(x)=asin(2x+\frac{π}{6})+b$,(a,b∈R且a≠0)
(1)当a=-2,b=0时,求f(x)的最小正周期与单调减区间;
(2)当$x∈[\frac{π}{4},\frac{3π}{4}]$时,其值域为[-3,1],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线f(x)=$\frac{ax}{{e}^{x}+1}$+be-x在点(0,f(0))处的切线方程为x+2y-2=0.
(Ⅰ)求a,b的值;
(Ⅱ)如果当x≠0时,都有f(x)>$\frac{x}{{e}^{x}-1}$+ke-x,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R,q≠1,q≠0)的等比数列.若a1=(d-2)2,a3=d2,b1=(q-2)2,b3=q2
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对任意自然数n均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+$\frac{{c}_{3}}{3{b}_{3}}$+…+$\frac{{c}_{n}}{n{b}_{n}}$=1+an+1,求数列{cn}的通项公式及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列不等式(组),用区间表示
(1)$\left\{\begin{array}{l}{3x-9<-7}\\{9-3x≥4}\end{array}\right.$
(2)(x+1)(2x-3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(a+b)n的二项展开式中,若奇数项的二项式系数的和为128,则二项式系数的最大值为70(结果用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知α,β为锐角,sinα=$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{3\sqrt{10}}{10}$,则α+β=$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案