分析 (Ⅰ)延长CD至点F,使得BF=BD,连接BF.证明△CAD∽△CBF,即可得出结论;
(Ⅱ)利用CD是∠ACB的角平分线,BD=AC=2AD,得出BC=2AC=4AD.由割线定理可得BE•BC=BD•BA,即可得出结论.
解答
(Ⅰ)证明:延长CD至点F,使得BF=BD,连接BF.
因为BF=BD,所以∠BFD=∠ADC,
因为CD是∠ACB的角平分线,所以∠ACD=∠BCF,
所以△CAD∽△CBF
所以$\frac{AC}{BC}$=$\frac{AD}{BF}$,
因为BF=BD,所以$\frac{AC}{BC}$=$\frac{AD}{BD}$;
(Ⅱ)解:因为CD是∠ACB的角平分线,BD=AC=2AD,
所以$\frac{BC}{AC}=\frac{BD}{AD}$=2,
所以BC=2AC=4AD.
由割线定理可得BE•BC=BD•BA,
∴BE=$\frac{3}{2}$AD,
∴EC=4AD-$\frac{3}{2}$AD=$\frac{5}{2}$AD,
所以$\frac{BE}{EC}$=$\frac{3}{5}$.
点评 本题考查三角形相似的判定与性质,考查角平分线的性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com