13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=cos¦Á}\\{y=sin¦Á}\end{array}}$£¬£¨¦ÁΪ²ÎÊý£©£®ÒÔÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µãMµÄ¼«×ø±êΪ£¨4£¬$\frac{¦Ð}{2}$£©£¬Ö±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{3}$£¬Ö±Ïßl¹ýµãM£®
£¨1£©£¬ÊÔд³öÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬²¢ÊÔÇóÇúÏßCÉϵĵ㵽ֱÏßl¾àÀëµÄ×î´óÖµ£»
£¨2£©°ÑÇúÏßCÉϵãµÄºá×ø±êÀ©´óµ½Ô­À´µÄ3±¶£¬×Ý×ø±êÀ©´óµ½Ô­À´µÄ2±¶£¬µÃµ½ÇúÏßC1£¬Èô¹ýµãE£¨1£¬0£©ÓëÖ±ÏßlƽÐеÄÖ±Ïßl¡ä£¬½»ÇúÏßC1ÓÚA£¬BÁ½µã£¬ÊÔÇó|EA|•|EB|µÄÖµ£®

·ÖÎö £¨1£©MµãµÄÖ±½Ç×ø±êΪ£¨0£¬4£©£¬¿ÉµÃÖ±ÏßlµÄ·½³ÌΪ£º$y-4=tan\frac{¦Ð}{3}•£¨x-0£©$£¬°Ñy=¦Ñsin¦È£¬x=¦Ñcos¦È´úÈ뻯Ϊ¼«×ø±êµÄ·½³Ì£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£®Ô²Ðĵ½Ö±ÏߵľàÀëd£¬¿ÉµÃÇúÏßCµ½Ö±ÏߵľàÀëµÄ×î´óֵΪd+r£®
£¨2£©Ö±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{3}$£¬¡àÖ±Ïßl¡äµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÓÉ${C_1}£º\left\{{\begin{array}{l}{x=3cos¦Á}\\{y=2sin¦Á}\end{array}}\right.$£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃÇúÏßC1µÄÆÕͨ·½³Ì£®ÁªÁ¢»¯¼ò£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©MµãµÄÖ±½Ç×ø±êΪ£¨0£¬4£©£¬¡àÖ±ÏßlµÄ·½³ÌΪ£º$y-4=tan\frac{¦Ð}{3}•£¨x-0£©$£¬$\sqrt{3}x-y+4=0$£¬
»¯Îª¼«×ø±êµÄ·½³ÌΪ$\sqrt{3}¦Ñcos¦È-¦Ñsin¦È+4=0$£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¬¿ÉÖªÇúÏßCµÄ·½³ÌΪx2+y2=1£¬Ô²Ðĵ½Ö±ÏߵľàÀë$d=\frac{|4|}{{\sqrt{3+1}}}=2$£¬
¡àÇúÏßCµ½Ö±ÏߵľàÀëµÄ×î´óֵΪ2+1=3£®
£¨2£©Ö±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{3}$£¬¡àÖ±Ïßl¡äµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÓÉ${C_1}£º\left\{{\begin{array}{l}{x=3cos¦Á}\\{y=2sin¦Á}\end{array}}\right.$£¬¿ÉµÃÇúÏßC1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$£®
ÁªÁ¢¿ÉµÃ$\frac{31}{4}{t}^{2}+4t-32$=0£¬
¡àt1t2=-$\frac{128}{31}$£¬
¹Ê|EA||EB|=$\frac{128}{31}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏߵIJÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÍÖÔ²µÄ²ÎÊý·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2sin¦È£¨0¡Ü¦È£¼2¦Ð£©£¬Ö±Ïßl¾­¹ýµãA£¨4£¬$\frac{3¦Ð}{2}$£©ÓëµãB£¨4£¬$\frac{11¦Ð}{6}$£©£¬ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£®
£¨1£©ÇóÇúÏßCµÄ²ÎÊý·½³ÌÓëÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãM¡¢N·Ö±ðÔÚÇúÏßCºÍÖ±ÏßlÉÏÔ˶¯£¬ÊÔÇóM¡¢NÁ½µãµÄ×îС¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ¼«×ø±êϵÖУ¬OΪ¼«µã£¬ÈôA£¨1£¬$\frac{¦Ð}{6}$£©£¬B£¨2£¬$\frac{2¦Ð}{3}$£©£¬Ôò¡÷AOBµÄÃæ»ýΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á+\sqrt{3}\\ y=2sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{6}$£®ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬B£¬ÇóÏß¶ÎABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô¾ØÕóA=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$µÄÄæ¾ØÕóΪ$[\begin{array}{l}{-3}&{2}\\{2}&{-1}\end{array}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬¡÷BCDÄÚ½ÓÓÚ¡ÑO£¬¹ýB×÷¡ÑOµÄÇÐÏßAB£¬µãCÔÚÔ²ÉÏ£¬¡ÏABCµÄ½Çƽ·ÖÏßBE½»Ô²ÓÚµãE£¬ÇÒDB¡ÍBE£®ÇóÖ¤£ºDB=DC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬CDÊÇ¡ÏACBµÄ½Çƽ·ÖÏߣ¬¡÷ACDµÄÍâ½ÓÔ²½»BCÓÚEµã£®
£¨¢ñ£©Ö¤Ã÷£º$\frac{AC}{BC}$=$\frac{AD}{BD}$£»
£¨¢ò£©Èô2AD=BD=AC£¬Çó$\frac{BE}{EC}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬¡ÑOµÄÖ±¾¶ABµÄÑÓ³¤ÏßÓëÏÒCDµÄÑÓ³¤ÏßÏཻÓÚµãP£¬EΪ¡ÑOÉÏÒ»µã£¬$\widehat{AE}$=$\widehat{AC}$£¬DE½»ABÓÚµãF£¬ÇÒAB=2BP=8£¬
£¨1£©ÇóPFµÄ³¤¶È£»
£¨2£©ÈôÔ²FÓëÔ²O ÄÚÇУ¬Ö±ÏßPTÓëÔ²FÇÐÓÚµãT£¬ÇóÏß¶ÎPTµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®[ÆÕͨ¸ßÖÐ]¹Û²ìÏÂÁÐͼÐΣº¡­Óɴ˹æÂÉ£¬ÔòµÚ30¸öͼÐαȵÚ27¸öͼÐÎÖеġ°¡î¡±¶à£¨¡¡¡¡£©
A£®59¿ÅB£®60¿ÅC£®87¿ÅD£®89¿Å

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸