精英家教网 > 高中数学 > 题目详情
4.在极坐标系中,O为极点,若A(1,$\frac{π}{6}$),B(2,$\frac{2π}{3}$),则△AOB的面积为1.

分析 由$\frac{2π}{3}-\frac{π}{6}$=$\frac{π}{2}$,可得OA⊥OB.即可得出△AOB的面积.

解答 解:∵$\frac{2π}{3}-\frac{π}{6}$=$\frac{π}{2}$,∴OA⊥OB.
∴S△AOB=$\frac{1}{2}|OA||OB|$=$\frac{1}{2}×1×2$=1.
故答案为:1.

点评 本题考查了极坐标的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设点P在曲线y=lnx上,点Q在曲线y=1-$\frac{1}{x}$(x>0)上,点R在直线y=x上,则|PR|+|RQ|的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知圆O是△ABC的外接圆,AB=BC,过点C作圆O的切线交BA的延长线于点F
(Ⅰ)求证:AF•AB=CF•AC;
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=sinα+cosα\\ y=1+sin2α\end{array}\right.$(α为参数,α∈[0,2π)),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ-ρcosθ=2.
(Ⅰ)写出直线l和曲线C的直角坐标方程;
(Ⅱ)求直线l与曲线C交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若对任意x>0,$\frac{x}{{{x^2}+3x+1}}$≤a恒成立,则a的最小值是(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=1.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,AB是圆O的直径,BC与圆O相切于B,D为圆O上一点,∠ADC+∠DCO=180°.
(1)证明:∠BCO=∠DCO;
(2)证明:AD•OC=AB•OD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}}$,(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,点M的极坐标为(4,$\frac{π}{2}$),直线l的倾斜角为$\frac{π}{3}$,直线l过点M.
(1),试写出直线l的极坐标方程,并试求曲线C上的点到直线l距离的最大值;
(2)把曲线C上点的横坐标扩大到原来的3倍,纵坐标扩大到原来的2倍,得到曲线C1,若过点E(1,0)与直线l平行的直线l′,交曲线C1于A,B两点,试求|EA|•|EB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,则猜想:1+2+3+…+(n-1)+n+(n+1)+n+…+3+2+1=n2

查看答案和解析>>

同步练习册答案