分析 (1)曲线C1的参数方程$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t为参数),利用cos2t+sin2t=1消去参数t化为普通方程.把x=ρcosθ,y=ρsinθ代入可得极坐标方程.
(2)曲线C2的极坐标方程为ρ=1,化为直角坐标方程:x2+y2=1.联立可得交点坐标,再化为极坐标即可得出.
解答 解:(1)曲线C1的参数方程$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t为参数),消去参数t化为普通方程:(x-1)2+(y-1)2=3,展开为:x2+y2-2x-2y-1=0.
把x=ρcosθ,y=ρsinθ代入可得极坐标方程:ρ2-2ρcosθ-2ρsinθ-1=0.
(2)曲线C2的极坐标方程为ρ=1,化为直角坐标方程:x2+y2=1.
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{{x}^{2}+{y}^{2}-2x-2y-1=0}\end{array}\right.$,j解得$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,
化为极坐标$(1,\frac{3π}{4})$,$(1,\frac{7π}{4})$.
∴C1与C2交点的极坐标分别为:$(1,\frac{3π}{4})$,$(1,\frac{7π}{4})$.
点评 本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com