精英家教网 > 高中数学 > 题目详情
16.如图所示,AB是圆O的直径,BC与圆O相切于B,D为圆O上一点,∠ADC+∠DCO=180°.
(1)证明:∠BCO=∠DCO;
(2)证明:AD•OC=AB•OD.

分析 (1)证明:BD⊥AD,AD∥OC,可得BD⊥CO,且CO平分BD,即可证明∠BCO=∠DCO;
(2)证明:△OCD∽△ABD,即可证明AD•OC=AB•OD.

解答 证明:(1)连接BD,则
∵AB是圆O的直径,
∴BD⊥AD,
∵∠ADC+∠DCO=180°,
∴AD∥OC,
∴BD⊥CO,且CO平分BD,
∴∠BCO=∠DCO;
(2)连接OD,则
由(1)可知∠CBD=∠CDB,∵∠OBD=∠ODB,
∴∠CBO=∠CDO=90°,∴OD⊥CD.
∵∠BCO=∠DCO=∠OBD,
∴△OCD∽△ABD,
∴$\frac{OD}{AD}$=$\frac{OC}{AB}$,
∴AD•OC=AB•OD.

点评 本题考查圆的切线的性质,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,半径为2的⊙O的直径AB的延长线与弦CD的延长线相交与点P,PE为⊙O的切线,E为切点,$\overrightarrow{BE}$=2$\overrightarrow{BD}$,若PB=2,PD=$\frac{5}{2}$,∠PEB=30°.
(1)求∠PCB的度数;
(2)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,已知在四棱锥,P一ABCD中,平面PAB⊥平面ABCD,PA⊥PB,且PA=PB=$\sqrt{2}$,CD∥AB,AD⊥AB,AD=CD=1
(1)试在线段AP上找一点M,使DM∥平面PBC并说明理;
(2)求二面角M-DC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在极坐标系中,O为极点,若A(1,$\frac{π}{6}$),B(2,$\frac{2π}{3}$),则△AOB的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.正方形ABCD-A1B1C1D1中,二面角B-A1C-A的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα+\sqrt{3}\\ y=2sinα\end{array}\right.$(α为参数)以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{6}$.若直线l与曲线C交于A,B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$的逆矩阵为$[\begin{array}{l}{-3}&{2}\\{2}&{-1}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E点.
(Ⅰ)证明:$\frac{AC}{BC}$=$\frac{AD}{BD}$;
(Ⅱ)若2AD=BD=AC,求$\frac{BE}{EC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tan($\frac{π}{4}$+α)=2,tanβ=$\frac{1}{2}$
(1)求tan2α的值;
(2)求$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$的值.

查看答案和解析>>

同步练习册答案