精英家教网 > 高中数学 > 题目详情
6.已知tan($\frac{π}{4}$+α)=2,tanβ=$\frac{1}{2}$
(1)求tan2α的值;
(2)求$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$的值.

分析 (1)已知第一个等式利用两角和与差的正切函数公式化简求出tanα的值,原式利用二倍角的正切函数公式化简后,代入计算即可求出值;
(2)原式利用两角和与差的正弦、余弦函数公式化简,再利用同角三角函数间基本关系变形,将已知等式代入计算即可求出值.

解答 解:(1)∵tan($\frac{π}{4}$+α)=$\frac{1+tanα}{1-tanα}$=2,
∴tanα=$\frac{1}{3}$,
则tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{\frac{2}{3}}{1-\frac{1}{9}}$=$\frac{3}{4}$;
(2)∵tanα=$\frac{1}{3}$,tanβ=$\frac{1}{2}$,
∴原式=$\frac{sinαcosβ+cosαsinβ-2sinαcosβ}{2sinαsinβ+cosαcosβ-sinαsinβ}$=$\frac{cosαsinβ-sinαcosβ}{sinαsinβ+cosαcosβ}$=$\frac{tanβ-tanα}{tanαtanβ+1}$=$\frac{\frac{1}{2}-\frac{1}{3}}{\frac{1}{2}×\frac{1}{3}+1}$=$\frac{1}{7}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示,AB是圆O的直径,BC与圆O相切于B,D为圆O上一点,∠ADC+∠DCO=180°.
(1)证明:∠BCO=∠DCO;
(2)证明:AD•OC=AB•OD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A为n阶可逆矩阵,A*是A的伴随矩阵,则|A*|=(  )
A.|A|B.$\frac{1}{|A|}$C.|A|*D.|A|n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,则猜想:1+2+3+…+(n-1)+n+(n+1)+n+…+3+2+1=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了推进身体健康知识宣传,有关单位举行了有关知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图表所示:
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
频率正确直方图 
第1组[15,25)50.5 
第2组[25,35)a0.9
第3组[35,45)27x
第4组[45,55)90.36
第5组[55,65)30.2
(1)分别求出n,a,x的值;
(2)请用统计方法估计参与该项知识有奖问答活动的n人的平均年龄(保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,ABCD是菱形,PA⊥平面ABCD
(1)求证:BD⊥PC;
(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥S-ABCD中,底面ABCD是菱形,且∠BCD=60°,侧面SAB是正三角形,且面SAB⊥面ABCD,F为SD的中点.
(1)证明:SB∥面ACF;
(2)求面SBC与面SAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F.求证:
(Ⅰ)GB•GA=GE•GF;
(Ⅱ)若AD=GB=OA=1,求GE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若Sn是数列[an}的前n项的和,且Sn=-n2+6n+7,则数列{an}的最大项的值为12.

查看答案和解析>>

同步练习册答案