精英家教网 > 高中数学 > 题目详情
△ABC的内角A,B,C的对边分别是a,b,c,且2acosA=bcosC+cosB.
(1)求A的大小;
(2)若a=2,求b+c的取值范围.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)通过正弦定理化简式子并分离出cosA,利用两角和的正弦函数化简求值,再求出A的大小;
(Ⅱ)通过余弦定理以及基本不等式求出b+c的范围,再利用三角形三边的关系求出b+c的范围.
解答: 解:(Ⅰ)∵2acosA=bcosC+ccosB,
∴由正弦定理得,2sinAcosA=sinBcosC+sinCcosB,
即cosA=
sinBcosC+sinCcosB
2sinA
=
sin(B+C)
2sinA
=
1
2

∵A∈(0,π),∴A=
π
3

(Ⅱ)由余弦定理得,a2=b2+c2-2bccosA,
则4=b2+c2-bc,∴(b+c)2-3bc=4,
即3bc=(b+c)2-43[
1
2
(b+c)]
2

化简得,(b+c)2≤16(当且仅当b=c时取等号),
则b+c≤4,又b+c>a=2,
综上得,b+c的取值范围是(2,4].
点评:本题考查正弦定理与余弦定理的应用,两角和的正弦公式,三角形的边角关系式,以及基本不等式求最值,考查分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的顶点B、C的坐标分别为(-1,-3)、(3,5),若点A在抛物线y=x2-4上移动,求△ABC的重心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=k(x-1),双曲线:x2-y2=4,试讨论下列情况下实数k的取值范围:
(1)直线l与双曲线有两个公共点;
(2)直线l与双曲线有且只有一个公共点;
(3)直线l与双曲线没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出所有同时满足以下两个条件的非空集合M.
①M⊆{1,2,3,4,5};  
②若a∈M,则6-a∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(cos2x,sin2x),
b
=(sin
π
4
,cos
π
4
)函数f(x)=
a
b

(1)求f(x)解析式;
(2)求函数y=f(x)的单调递减区间;
(3)在给出的直角坐标系中用“五点作图法”画出函数y=f(x)在[0,π]上的图象.
(要求列表、描点、连线)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1处的切线斜率为2,且导函数f′(x)的图象关于直线x=
1
3
对称.
(1)求a,b的值;
(2)若f(x)的图象与g(x)=x2的图象有且仅有三个公共点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-x≤0,x∈R},设函数f(x)=2x2-2x+3,x∈A的值域为B,求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x=3sinα,y=3cosα,则x,y之间的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的公差d不为0,Sn是其前n项和,给出下列命题:
①若d>0,且S3=S8,则S5和S6都是{Sn}中的最小项;
②给定n,对于一切k∈N+(k<n),都有an-k+an+k=2an
③若d<0,则{Sn}中一定有最大的项;
④存在k∈N+,使ak-ak+1和ak-ak-1同号;
⑤S2013>3(S1342-S671).
其中正确命题的序号为
 

查看答案和解析>>

同步练习册答案