精英家教网 > 高中数学 > 题目详情

【题目】已知O为原点,抛物线的准线与y轴的交点为HP为抛物线C上横坐标为4的点,已知点P到准线的距离为5.

1)求C的方程;

2)过C的焦点F作直线l与抛物线C交于AB两点,若以AH为直径的圆过B,求的值.

【答案】1;(24.

【解析】

1)由题意结合椭圆的性质可得,求得后即可得解;

2)设,直线AB的方程为,联立方程组结合韦达定理可得,由圆的性质、直线垂直的性质可得,进而可得,再由抛物线的性质即可得解.

1)由题意点,抛物线的准线方程为

,解得(舍),

∴抛物线方程为

2)由题意抛物线的焦点为,准线方程为

由题意可知,直线AB的斜率存在且不为0,

,直线AB的方程为

代入抛物线方程可得

,①

可得,∴

整理得,即

,②

把①代入②得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新冠疫情发生后,酒精使用量大增,某生产企业调整设备,全力生产两种不同浓度的酒精,按照计划可知在一个月内,酒精日产量(单位:吨)与时间n()成等差数列,且.又知酒精日产量所占比重与时间n成等比数列,酒精日产量所占比重与时间n的关系如下表():

酒精日产量所占比重

……

时间n

1

2

3

……

1)求的通项公式;

2)若,求前n酒精的总生产量(单位:吨,).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中e为自然对数的底数(.

1)当时,求处的切线方程;

2)设,求的单调区间;

3)当时,恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,其中e=2.71828…为自然对数的底数.

(Ⅰ)证明:函数上有唯一零点;

(Ⅱ)记x0为函数上的零点,证明:

(ⅰ)

(ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是(

A.62%B.56%

C.46%D.42%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且过点A21).

1)求C的方程:

2)点MNC上,且AMANADMND为垂足.证明:存在定点Q,使得|DQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司采购了一批零件,为了检测这批零件是否合格,从中随机抽测120个零件的长度(单位:分米),按数据分成6组,得到如图所示的频率分布直方图,其中长度大于或等于1.59分米的零件有20个,其长度分别为1.591.591.611.611.621.631.631.641.651.651.651.651.661.671.681.691.691.711.721.74,以这120个零件在各组的长度的频率估计整批零件在各组长度的概率.

1)求这批零件的长度大于1.60分米的频率,并求频率分布直方图中的值;

2)若从这批零件中随机选取3个,记为抽取的零件长度在的个数,求的分布列和数学期望;

3)若变量满足,则称变量满足近似于正态分布的概率分布.如果这批零件的长度(单位:分米)满足近似于正态分布的概率分布,则认为这批零件是合格的将顺利被签收;否则,公司将拒绝签收.试问,该批零件能否被签收?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案