精英家教网 > 高中数学 > 题目详情
求下列函数的导数.
(1)y=(2x2+3)(3x-1);            
(2)f(x)=
cosx+sinx
x
考点:导数的运算
专题:导数的概念及应用
分析:根据导数的公式和导数的运算法则进行求导即可.
解答: 解:(1)法一 y'=(2x2+3)'(3x-1)+(2x2+3)(3x-1)'
=4x(3x-1)+3(2x2+3)=18x2-4x+9…(6分)
法二∵y=(2x2+3)(3x-1)=6x3-2x2+9x-3,
∴y'=(6x3-2x2+9x-3)'=18x2-4x+9.
(2)2)f(x)=
(sinx+cosx)′x-(sinx+cosx)x′
x2
(8分)
=
(cosx-sinx)x-(sinx+cosx)•1
x2
=
(x-1)cosx-(x+1)sinx
x2
…(12分)
点评:本题主要考查导数的计算,要求熟练掌握导数的运算法则和导数公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x,y)在圆x2+y2-6x-6y+14=0上. 求
y
x
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=xsinx,则f′(
2
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(1)证明数列{an}是等差数列,并求an的通项公式;
(2)设数列{
1
anan+1
}的前n项和为Tn,证明:Tn
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?a∈R,使得x2+ax+1=0有解,则?p为(  )
A、?a∈R,使得x2+ax+1≠0有解
B、?a∈R,使得x2+ax+1=0无解
C、?a∈R,都有x2+ax+1=0无解
D、?a∈R,都有x2+ax+1≠0无解

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(Ⅰ)设向量
d
=
8
a
+
8
b
,且|
d
|=
10
,求向量
d
的坐标;
(Ⅱ) 若(
a
+k
c
)∥(2
b
-
a
),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,设命题p:函数f(x)=lg(ax2+2x+1)定义域为R;命题q:函数g(x)=x2-2ax+3在(2,+∞)上是增函数.如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:cos40°•2sin40°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+ax-12=0},B={x|x2+bx+c=0},且A≠B,A∩B={-3},A∪B={-3,1,4},求实数a,b,c的值.

查看答案和解析>>

同步练习册答案