分析 已知等式利用正弦定理化简,得到关系式,利用余弦定理表示出cosC,把得出关系式整理后代入,利用基本不等式求出cosC的最小值即可..
解答 解:△ABC中,∵sinA+$\sqrt{2}$sinB=2sinC,∴a+$\sqrt{2}$b=2c,
两边平方得:(a+$\sqrt{2}$b)2=4c2,即a2+2$\sqrt{2}$ab+2b2=4c2,
即a2+b2-c2=3c2-b2-2$\sqrt{2}$ab=3•${(\frac{a+\sqrt{2}b}{2})}^{2}$-b2-2$\sqrt{2}$ab=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{4}$,
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{8ab}$=$\frac{3}{8}•\frac{a}{b}$+$\frac{1}{4}•\frac{b}{a}$-$\frac{\sqrt{2}}{4}$≥2$\sqrt{\frac{3a}{8b}•\frac{b}{4a}}$-$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
当且仅当$\frac{3a}{8b}$=$\frac{b}{4a}$,即当a=$\frac{2\sqrt{6}}{3}$,b=2时,cosC 取得最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.
点评 此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | log34<log43<log${\;}_{\frac{4}{3}}$$\frac{3}{4}$ | B. | log34>log43>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$ | ||
| C. | log34>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log43 | D. | log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log34>log43 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{39}}}{13}$ | B. | $\frac{{2\sqrt{13}}}{13}$ | C. | $\frac{{2\sqrt{39}}}{13}$ | D. | $\frac{{\sqrt{13}}}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3+\sqrt{5}}}{2}$ | B. | $\sqrt{\frac{{\sqrt{5}+1}}{2}}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1.2] | B. | (1.2] | C. | [1.2) | D. | ∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com