精英家教网 > 高中数学 > 题目详情
1.已知△ABC的内角A,B,C对的边分别为a,b,c,sinA+$\sqrt{2}$sinB=2sinC,b=2,则当cosC取得最小值时,a=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 已知等式利用正弦定理化简,得到关系式,利用余弦定理表示出cosC,把得出关系式整理后代入,利用基本不等式求出cosC的最小值即可..

解答 解:△ABC中,∵sinA+$\sqrt{2}$sinB=2sinC,∴a+$\sqrt{2}$b=2c,
两边平方得:(a+$\sqrt{2}$b)2=4c2,即a2+2$\sqrt{2}$ab+2b2=4c2
即a2+b2-c2=3c2-b2-2$\sqrt{2}$ab=3•${(\frac{a+\sqrt{2}b}{2})}^{2}$-b2-2$\sqrt{2}$ab=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{4}$,
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{8ab}$=$\frac{3}{8}•\frac{a}{b}$+$\frac{1}{4}•\frac{b}{a}$-$\frac{\sqrt{2}}{4}$≥2$\sqrt{\frac{3a}{8b}•\frac{b}{4a}}$-$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
当且仅当$\frac{3a}{8b}$=$\frac{b}{4a}$,即当a=$\frac{2\sqrt{6}}{3}$,b=2时,cosC 取得最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

点评 此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.log43、log34、log${\;}_{\frac{4}{3}}$$\frac{3}{4}$的大小顺序是(  )
A.log34<log43<log${\;}_{\frac{4}{3}}$$\frac{3}{4}$B.log34>log43>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$
C.log34>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log43D.log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log34>log43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={y|y=2x,x∈R},B={y|y=x2,x∈R},则(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在直三棱柱ABC-A1B1C1中,若BC⊥AC,$∠A=\frac{π}{3}$,AC=4,AA1=4,M为AA1的中点,P为BM的中点,Q在线段CA1上,A1Q=3QC.则异面直线PQ与AC所成角的正弦值为(  )
A.$\frac{{\sqrt{39}}}{13}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足a3=3,a5=9;数列{bn}的前n项和为Sn,且满足${b}_{1}=1,{b}_{2}=3,{S}_{n+1}=4{S}_{n}-3{S}_{n-1}(n≥2,n∈{N}^{*})$.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若对任意的$n∈{N}^{*},({S}_{n}+\frac{1}{2})?k≥{a}_{n}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知半圆O的半径为1,点C在直径AB的延长线上,且BC=1,P是半圆上动点,以PC为一边作等腰直角三角形PCK(K为直角顶点,且K和O在PC的两侧).
(1)求四边形OPKC面积的最大值;
(2)设t=$\frac{△POC的面积}{△PCK的面积}$,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点F(-c,0)(c>0)是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左焦点,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且点P在抛物线y2=4cx上,则该双曲线的离心率是(  )
A.$\frac{{3+\sqrt{5}}}{2}$B.$\sqrt{\frac{{\sqrt{5}+1}}{2}}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知不等式$ax-\frac{1}{a}>0$的解集为(1,+∞),则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\}$,$B=\left\{{\left.y\right|y=2-\frac{1}{{{x^2}+1}}}\right\}$,则A∩B=(  )
A.[1.2]B.(1.2]C.[1.2)D.

查看答案和解析>>

同步练习册答案