分析 运用离心率公式和渐近线方程,结合点到直线的距离公式可得b,再由a,b,c的关系,得到a,进而得到双曲线的方程.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,
则e=$\frac{c}{a}$=2,即c=2a,
设焦点为(c,0),渐近线方程为y=$\frac{b}{a}$x,
则d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{bc}{c}$=b=1,
又b2=c2-a2=1,
解得a2=$\frac{1}{3}$.
∴双曲线的方程为$\frac{{x}^{2}}{\frac{1}{3}}-{y}^{2}=1$.
故答案为:$\frac{{x}^{2}}{\frac{1}{3}}-{y}^{2}=1$.
点评 本题考查双曲线的方程和性质,主要考查离心率和渐近线方程的运用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
| C. | 向左平移$\frac{π}{12}$个单位 | D. | 向左平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com